cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019739 Decimal expansion of e/2.

Original entry on oeis.org

1, 3, 5, 9, 1, 4, 0, 9, 1, 4, 2, 2, 9, 5, 2, 2, 6, 1, 7, 6, 8, 0, 1, 4, 3, 7, 3, 5, 6, 7, 6, 3, 3, 1, 2, 4, 8, 8, 7, 8, 6, 2, 3, 5, 4, 6, 8, 4, 9, 9, 7, 9, 7, 8, 7, 4, 8, 3, 4, 8, 3, 8, 1, 3, 8, 6, 2, 0, 3, 8, 3, 1, 5, 1, 7, 6, 7, 7, 3, 7, 9, 7, 2, 8, 5, 6, 9, 1, 0, 8, 9, 2, 6, 2, 5, 8, 3, 2, 1
Offset: 1

Views

Author

Keywords

Examples

			1.359140914229522617680143735676331248878623546849979787483483813862038... = A001113/2.
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.3, p. 14.
  • Jolley, Summation of Series, Dover (1961) eq. (161) on page 30.

Crossrefs

Cf. A001113, A006083 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(1)/2; // Vincenzo Librandi, Apr 05 2020
  • Mathematica
    N[Product[((1/n)!)^MoebiusMu[n], {n, 1, 200000}]] (* John M. Campbell, Jun 14 2011 *)
    RealDigits[E/2,10,120][[1]] (* Harvey P. Dale, Sep 18 2018 *)
  • PARI
    default(realprecision, 20080); x=exp(1)/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019739.txt", n, " ", d)); \\ Harry J. Smith, May 10 2009
    
  • PARI
    digits(10^default(realprecision)*exp(1)\20) \\ M. F. Hasler, Apr 01 2020
    

Formula

e/2 = lim_{n->oo} n*(e - (1+1/n)^n). - Benoit Cloitre, Sep 17 2002
e/2 = Product_{n>=1} ((1/n)!)^mu(n), where mu is the Mobius function is an unusual infinite product for this number: (see Millane ref.). - John M. Campbell, Jun 14 2011
10*(this constant) = 5*exp(1) = Sum_{j>=0} j^3/j! [Jolley]. - R. J. Mathar, Oct 03 2011
Equals Sum_{j>=0} (1+j)/(1+2*j)!. - Bruno Berselli, May 25 2015
Equals the coefficient of x in Sum_{m>1} log((1 - x/m!)(1 - 2x/m!)...(1 - (m-1)x/m!)). - M. F. Hasler, Apr 01 2020
Equals A001113/2 = Sum_{k>=1} k*(k-1)/(2 * k!). - Amiram Eldar, Aug 10 2020