A019774 Decimal expansion of sqrt(e).
1, 6, 4, 8, 7, 2, 1, 2, 7, 0, 7, 0, 0, 1, 2, 8, 1, 4, 6, 8, 4, 8, 6, 5, 0, 7, 8, 7, 8, 1, 4, 1, 6, 3, 5, 7, 1, 6, 5, 3, 7, 7, 6, 1, 0, 0, 7, 1, 0, 1, 4, 8, 0, 1, 1, 5, 7, 5, 0, 7, 9, 3, 1, 1, 6, 4, 0, 6, 6, 1, 0, 2, 1, 1, 9, 4, 2, 1, 5, 6, 0, 8, 6, 3, 2, 7, 7, 6, 5, 2, 0, 0, 5, 6, 3, 6, 6, 6, 4
Offset: 1
Examples
1.6487212707001281468486507878141635716537761007101480115750...
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Michael Penn, On means of binomial coefficients., YouTube video, 2020.
- Michael I. Shamos, A catalog of the real numbers, (2007). See p. 522.
- Index entries for transcendental numbers.
Programs
-
Maple
evalf(sqrt(exp(1)), 120); # Muniru A Asiru, Aug 16 2018
-
Mathematica
RealDigits[N[Sqrt[E],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
-
PARI
default(realprecision, 20080); x=sqrt(exp(1)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019774.txt", n, " ", d)); \\ Harry J. Smith, May 01 2009
Formula
sqrt(e) = Sum_{n>=0} 1/(2^n*n!) = Sum_{n>=0} 1/(2n)!!. - Daniel Forgues, Apr 17 2011
sqrt(e) = 1 + Sum_{n>0} Product_{i=1..n} 1/(2n). - Ralf Stephan, Sep 11 2013
Continued fraction representation: sqrt(e) = 1 + 1/(1 + 2/(3 + 4/(5 + ... ))). See A000354 for details. - Peter Bala, Jan 30 2015
sqrt(e) = (1/2)*( 1 + (3 + (5 + (7 + ...)/6)/4)/2 ) = 1 + (1 + (1 + (1 + ...)/6)/4)/2. - Rok Cestnik, Jan 19 2017
sqrt(e) = 2*Sum_{n >= 0} 1/((1 - 4*n^2)*(2^n)*n!). - Peter Bala, Jan 16 2022
sqrt(e) = (16/31)*(1 + Sum_{n>=1} (1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!). - Alexander R. Povolotsky, Jul 01 2022
sqrt(e) = Sum_{n >= 0} (n + 1/2)/(2^n*n!). - Peter Bala, Jun 29 2024
Equals i^(-i/Pi), where i denotes the imaginary unit. - Stefano Spezia, Mar 01 2025
Comments