cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A019874 Decimal expansion of sine of 65 degrees.

Original entry on oeis.org

9, 0, 6, 3, 0, 7, 7, 8, 7, 0, 3, 6, 6, 4, 9, 9, 6, 3, 2, 4, 2, 5, 5, 2, 6, 5, 6, 7, 5, 4, 3, 1, 6, 9, 8, 3, 2, 6, 7, 7, 1, 2, 6, 2, 5, 1, 7, 5, 8, 6, 4, 6, 8, 0, 8, 7, 1, 2, 9, 8, 4, 0, 8, 8, 2, 2, 6, 1, 8, 3, 8, 5, 9, 3, 6, 3, 6, 9, 4, 1, 1, 2, 9, 0, 3, 6, 3, 7, 0, 1, 0, 8, 5, 4, 5, 7, 7, 0, 2
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 12 and denominator 2. - Charles R Greathouse IV, Nov 06 2017

Programs

Formula

Equals cos(5*Pi/36) = 2F1(17/24,7/24;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals A019861 * A019886 + A019822 * A019847 = A010527 * A019894 + A019814*(1/2). - R. J. Mathar, Jan 27 2021

A019866 Decimal expansion of sine of 57 degrees.

Original entry on oeis.org

8, 3, 8, 6, 7, 0, 5, 6, 7, 9, 4, 5, 4, 2, 4, 0, 2, 9, 6, 3, 7, 5, 9, 0, 9, 4, 1, 8, 0, 4, 5, 4, 7, 8, 9, 4, 0, 3, 9, 5, 0, 0, 2, 6, 5, 0, 9, 5, 9, 2, 3, 8, 2, 4, 9, 2, 2, 0, 1, 2, 9, 0, 2, 9, 2, 2, 6, 3, 5, 1, 6, 9, 5, 3, 4, 3, 8, 0, 6, 7, 7, 5, 1, 3, 4, 7, 3, 9, 8, 3, 9, 2, 2, 9, 7, 4, 5, 3, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Nov 05 2017

Programs

Formula

A019885 Decimal expansion of sine of 76 degrees.

Original entry on oeis.org

9, 7, 0, 2, 9, 5, 7, 2, 6, 2, 7, 5, 9, 9, 6, 4, 7, 2, 3, 0, 6, 3, 7, 7, 8, 7, 4, 0, 3, 3, 9, 9, 0, 3, 7, 7, 6, 3, 2, 2, 6, 0, 8, 5, 2, 4, 4, 3, 0, 8, 2, 9, 1, 5, 6, 5, 6, 5, 8, 8, 7, 6, 2, 3, 2, 3, 5, 5, 5, 7, 3, 5, 8, 3, 6, 6, 3, 0, 9, 2, 9, 6, 5, 5, 4, 4, 2, 9, 2, 2, 4, 4, 5, 3, 1, 9, 3, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Equals sin(19*Pi/45). - Wesley Ivan Hurt, Sep 01 2014
An algebraic number of degree 24 and denominator 2. - Charles R Greathouse IV, Nov 06 2017

Examples

			0.970295726275996472306377874033990377632260852443082915656588...
		

Programs

Formula

Equals 2*A019847*A019861. - R. J. Mathar, Jan 17 2021

A019950 Decimal expansion of tangent of 52 degrees.

Original entry on oeis.org

1, 2, 7, 9, 9, 4, 1, 6, 3, 2, 1, 9, 3, 0, 7, 8, 7, 8, 0, 3, 1, 1, 0, 2, 9, 8, 4, 7, 5, 7, 1, 9, 9, 1, 1, 9, 2, 1, 2, 3, 1, 5, 1, 8, 8, 5, 2, 7, 0, 4, 5, 9, 3, 8, 0, 7, 0, 0, 2, 9, 1, 0, 9, 6, 1, 4, 0, 4, 2, 2, 0, 1, 5, 7, 8, 2, 3, 3, 6, 3, 3, 9, 2, 8, 5, 8, 4, 2, 0, 4, 3, 8, 9, 2, 4, 4, 1, 2, 6
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 38 degrees. - Ivan Panchenko, Sep 01 2014

Examples

			1.279941632193078780311029847571991192123151885270459380700291...
		

Crossrefs

Cf. A019861 (sine of 52 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(13*Pi(R)/45); // G. C. Greubel, Nov 23 2018
    
  • Mathematica
    RealDigits[Tan[13*Pi/45], 10, 100][[1]] (* G. C. Greubel, Nov 23 2018 *)
  • PARI
    default(realprecision, 100); tan(13*Pi/45) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    numerical_approx(tan(13*pi/45), digits=100) # G. C. Greubel, Nov 23 2018

A237131 Numbers k such that cos(k) = sin(d(1)*d(2)*...*d(q)) where d(1)d(2)...d(q) denotes the decimal expansion of k and the angles are in degrees.

Original entry on oeis.org

90, 270, 375, 418, 450, 630, 726, 735, 778, 810, 990, 999, 1146, 1170, 1350, 1371, 1386, 1395, 1446, 1494, 1530, 1710, 1731, 1890, 1998, 2070, 2218, 2250, 2394, 2430, 2482, 2610, 2790, 2842, 2898, 2970, 3150, 3171, 3186, 3195, 3312, 3330, 3366, 3375, 3393
Offset: 1

Views

Author

Michel Lagneau, Feb 04 2014

Keywords

Examples

			2482 is in the sequence because cos(2482°) = sin(2*4*8*2°)= 0.7880107536067219... (A019861).
		

Crossrefs

Cf. A237129.

Programs

  • Maple
    with(numtheory):err:=1/10^10:Digits:=20:for n from 1 to 5000 do:x:=convert(n,base,10):n1:=nops(x):p:=product('x[i]', 'i'=1..n1):s1:=evalf(cos(n*Pi/180)):s2:=evalf(sin(p*Pi/180)):if abs(s1-s2)
    				

Extensions

Name edited by Jon E. Schoenfield, Sep 12 2017
Showing 1-5 of 5 results.