cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002966 Egyptian fractions: number of solutions of 1 = 1/x_1 + ... + 1/x_n where 0 < x_1 <= ... <= x_n.

Original entry on oeis.org

1, 1, 3, 14, 147, 3462, 294314, 159330691
Offset: 1

Views

Author

Keywords

Comments

All denominators in the expansion 1 = 1/x_1 + ... + 1/x_n are bounded by A000058(n-1), i.e., 0 < x_1 <= ... <= x_n < A000058(n-1). Furthermore, for a fixed n, x_i <= (n+1-i)*(A000058(i-1)-1). - Max Alekseyev, Oct 11 2012
From R. J. Mathar, May 06 2010: (Start)
This is the leading edge of the triangle A156869. This is also the row n=1 of an array T(n,m) which gives the number of ways to write 1/n as a sum over m (not necessarily distinct) unit fractions:
1, 1, 3, 14, 147, 3462, 294314, ...
1, 2, 10, 108, 2892, 270332, ...
1, 2, 21, 339, 17253, ...
1, 3, 28, 694, 51323, ...
...
T(.,2) = A018892. T(.,3) = A004194. T(.,4) = A020327, T(.,5) = A020328. T(2,6) is computed by D. S. McNeil, who conjectures that the 2nd row is A003167. (End)
If on the other hand, all x_k must be unique, see A006585. - Robert G. Wilson v, Jul 17 2013

Examples

			For n=3 the 3 solutions are {2,3,6}, {2,4,4}, {3,3,3}.
For n=4 the solutions are: {2,3,7,42}, {2,3,8,24}, {2,3,9,18}, {2,3,10,15}, {2,3,12,12}, {2,4,5,20}, {2,4,6,12}, {2,4,8,8}, {2,5,5,10}, {2,6,6,6}, {3,3,4,12}, {3,3,6,6}, {3,4,4,6}, {4,4,4,4}. [Neven Juric, May 14 2008]
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D11.
  • D. Singmaster, The number of representations of one as a sum of unit fractions, unpublished manuscript, 1972.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    a(n,rem=1,mn=1)=if(n==1,return(numerator(rem)==1)); sum(k=max(1\rem+1,mn), n\rem, a(n-1,rem-1/k,k)) \\ Charles R Greathouse IV, Jan 04 2015

Formula

a(n) <= binomial(A007018(n), n-1). - Charles R Greathouse IV, Jul 29 2024

Extensions

a(7) from Jud McCranie, Nov 15 1999. Confirmed by Marc Paulhus.
a(8) from John Dethridge (jcd(AT)ms.unimelb.edu.au) and Jacques Le Normand (jacqueslen(AT)sympatico.ca), Jan 06 2004

A342267 Number of partitions of 1/n into n reciprocals of positive integers.

Original entry on oeis.org

1, 2, 21, 694, 118995, 132891609
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 07 2021

Keywords

Examples

			a(2) = 2 because we have 1/2 = 1/4 + 1/4 = 1/3 + 1/6.
		

Crossrefs

Extensions

a(6) from Jud McCranie, Sep 02 2021
Showing 1-2 of 2 results.