cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 55 results. Next

A357765 Smallest positive integer that can be represented as the sum of n of its (possibly equal) divisors in the maximum number of ways (=A002966(n)).

Original entry on oeis.org

1, 2, 12, 2520, 48348686786400, 10543141534556403817127800577537146514577188497111149855093902265479066128013109211427715400552367011213513440000
Offset: 1

Views

Author

David A. Corneth and Max Alekseyev, Oct 12 2022

Keywords

Examples

			a(3) = 12 since for n = 3 the tuples forming the solutions of 1 = 1/x_1 + 1/x_2 + 1/x_3 are (x_1, x_2, x_3) in {(2, 3, 6), (2, 4, 4), (3, 3, 3)}. All these terms combined have an lcm of 12. The ways to write 12 as a sum of 3 of its divisors are therefore 12 = 12/2 + 12/3 + 12/6 = 6 + 4 + 2. Similarily we have 12 = 6 + 3 + 3 and 12 = 4 + 4 + 4.
		

Crossrefs

Apparently coincides with A181700 for n >= 4.

Formula

a(n) = LCM of all denominators of Egyptian fractions enumerated by A002966(n).

A051908 Number of ways to express 1 as the sum of unit fractions such that the sum of the denominators is n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 3, 0, 1, 1, 1, 1, 2, 3, 2, 2, 1, 2, 2, 2, 4, 5, 5, 2, 4, 5, 5, 9, 4, 4, 6, 4, 4, 7, 8, 4, 10, 9, 9, 11, 8, 13, 13, 15, 16, 21, 18, 16, 22, 19, 18, 30, 24, 19, 26, 28, 26, 29, 35, 29, 44, 28, 47, 48
Offset: 1

Views

Author

Jud McCranie, Dec 16 1999

Keywords

Comments

Also the number of partitions of n whose reciprocal sums to 1; "exact partitions". - Robert G. Wilson v, Sep 30 2009

Examples

			1 = 1/2 + 1/2, the sum of denominators is 4, and this is the only expression of 1 as unit fractions with denominator sum 4, so a(4)=1.
The a(22) = 3 partitions whose reciprocal sum is 1 are (12,4,3,3), (10,5,5,2), (8,8,4,2). - _Gus Wiseman_, Jul 16 2018
		

References

  • Derrick Niederman, "Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed", a Perigee Book, Penguin Group, NY, 2009, pp. 82-83. [From Robert G. Wilson v, Sep 30 2009]

Crossrefs

A028229 lists n such that a(n)=0.

Programs

  • Mathematica
    (* first do *) << "Combinatorica`"; (* then *) f[n_] := Block[{c = i = 0, k = PartitionsP@n, p = {n}}, While[i < k, If[1 == Plus @@ (1/p), c++ ]; i++; p = NextPartition@p]; c]; Array[f, 88] (* Robert G. Wilson v, Sep 30 2009 *)
    Table[Length[Select[IntegerPartitions[n],Sum[1/m,{m,#}]==1&]],{n,30}] (* Gus Wiseman, Jul 16 2018 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A051908(n)
      ary = [1]
      (2..n).each{|m|
        cnt = 0
        partition(m, 2, m).each{|ary|
          cnt += 1 if ary.inject(0){|s, i| s + 1 / i.to_r} == 1
        }
        ary << cnt
      }
      ary
    end
    p A051908(100) # Seiichi Manyama, May 31 2016

Formula

a(n) > 0 for n > 23.

A316888 Heinz numbers of aperiodic integer partitions into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

2, 195, 3185, 6475, 10527, 16401, 20445, 20535, 21045, 25365, 46155, 164255, 171941, 218855, 228085, 267883, 312785, 333925, 333935, 335405, 343735, 355355, 414295, 442975, 474513, 527425, 549575, 607475, 633777, 691041, 711321, 722425, 753865, 804837, 822783
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.
Does not contain 29888089, which belongs to A316890 and is the Heinz number of a periodic partition.

Examples

			The partition (6,4,4,3) with Heinz number 3185 is aperiodic, has relatively prime parts, and 1/6 + 1/4 + 1/4 + 1/3 = 1, so 3185 belongs to the sequence.
The sequence of partitions whose Heinz numbers belong to the sequence begins: (1), (6,3,2), (6,4,4,3), (12,4,3,3), (10,5,5,2), (20,5,4,2), (15,10,3,2), (12,12,3,2), (18,9,3,2), (24,8,3,2), (42,7,3,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@FactorInteger[#][[All,2]]==1,GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]==1]&]

A316904 Heinz numbers of aperiodic integer partitions into relatively prime parts whose reciprocal sum is an integer.

Original entry on oeis.org

2, 18, 72, 162, 195, 250, 288, 294, 390, 500, 588, 648, 780, 1125, 1152, 1176, 1458, 1560, 1755, 2000, 2250, 2352, 2592, 2646, 3120, 3185, 3510, 4000, 4500, 4608, 4704, 4802, 5292, 6240, 6370, 6475, 7020, 8450, 9000, 9408, 10125, 10368, 10527, 10584, 12480
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The sequence of partitions whose Heinz numbers belong to this sequence begins: (1), (221), (22111), (22221), (632), (3331), (2211111), (4421), (6321), (33311), (44211), (2222111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,20000],And[GCD@@FactorInteger[#][[All,2]]==1,GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]]&]

A192787 Number of distinct solutions of 4/n = 1/a + 1/b + 1/c in positive integers satisfying 1 <= a <= b <= c.

Original entry on oeis.org

0, 1, 3, 3, 2, 8, 7, 10, 6, 12, 9, 21, 4, 17, 39, 28, 4, 26, 11, 36, 29, 25, 21, 57, 10, 20, 29, 42, 7, 81, 19, 70, 31, 25, 65, 79, 9, 32, 73, 96, 7, 86, 14, 62, 93, 42, 34, 160, 18, 53, 52, 59, 13, 89, 98, 136, 41, 33, 27, 196, 11, 37, 155, 128, 49, 103, 17, 73, 55, 185, 40, 211, 7, 32, 129, 80, 97, 160, 37, 292
Offset: 1

Views

Author

Keywords

Comments

The Erdős-Straus conjecture is that a(n) > 0 for n > 1. Swett verified the conjecture for n < 10^14.
Vaughan shows that the number of n < x with a(n) = 0 is at most x exp(-c * (log x)^(2/3)) for some c > 0.
See A073101 for the 4/n conjecture due to Erdős and Straus.

Examples

			a(1) = 0, since 4/1 = 4 cannot be expressed as the sum of three reciprocals.
a(2) = 1 because 4/2 = 1/1 + 1/2 + 1/2, and there are no other solutions.
a(3) = 3 since 4/3 = 1 + 1/4 + 1/12 = 1 + 1/6 + 1/6 = 1/2 + 1/2 + 1/3.
a(4) = 3 = A002966(3).
		

Crossrefs

A292581 counts the solutions with multiplicity. A073101 counts solutions with a, b, and c distinct.
Cf. A337432 (solutions with minimal c).

Programs

  • Maple
    A192787 := proc(n) local t,a,b,t1,count; t:= 4/n; count:= 0; for a from floor(1/t)+1 to floor(3/t) do t1:= t - 1/a; for b from max(a,floor(1/t1)+1) to floor(2/t1) do if type( 1/(t1 - 1/b),integer) then count:= count+1; end if end do end do; count; end proc; # Robert Israel, Feb 19 2013
  • Mathematica
    f[n_] := Length@ Solve[ 4/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Array[f, 70] (* Allan C. Wechsler and Robert G. Wilson v, Jul 19 2013 *)
  • PARI
    a(n, show=0)=my(t=4/n, t1, s, c); for(a=1\t+1, 3\t, t1=t-1/a; for(b=max(1\t1+1, a), 2\t1, c=1/(t1-1/b); if(denominator(c)==1&&c>=b, s++; show&&print("4/",n," = 1/",a," + 1/",b," + 1/",c)))); s \\ variant with print(...) added by Robert Munafo, Feb 19 2013, both combined through option "show" by M. F. Hasler, Jul 02 2022

Extensions

Corrected at the suggestion of Allan C. Wechsler by Charles R Greathouse IV, Feb 19 2013
Examples and cross-references added by M. F. Hasler, Feb 19 2013

A006585 Egyptian fractions: number of solutions to 1 = 1/x_1 + ... + 1/x_n in positive integers x_1 < ... < x_n.

Original entry on oeis.org

1, 0, 1, 6, 72, 2320, 245765, 151182379
Offset: 1

Views

Author

Keywords

Comments

All denominators in the expansion 1 = 1/x_1 + ... + 1/x_n are bounded by A000058(n-1), i.e., 0 < x_1 < ... < x_n < A000058(n-1). Furthermore, for a fixed n, x_i <= (n+1-i)*(A000058(i-1)-1). - Max Alekseyev, Oct 11 2012
If on the other hand, x_k need not be unique, see A002966. - Robert G. Wilson v, Jul 17 2013

Examples

			The 6 solutions for n=4 are 2,3,7,42; 2,3,8,24; 2,3,9,18; 2,3,10,15; 2,4,5,20; 2,4,6,12.
		

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A280520(n,1).

Extensions

a(1)-a(7) are confirmed by Jud McCranie, Dec 11 1999
a(8) from John Dethridge (jcd(AT)ms.unimelb.edu.au), Jan 08 2004

A355200 Numbers k that can be written as the sum of 3 divisors of k (not necessarily distinct).

Original entry on oeis.org

3, 4, 6, 8, 9, 12, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 33, 36, 39, 40, 42, 44, 45, 48, 51, 52, 54, 56, 57, 60, 63, 64, 66, 68, 69, 72, 75, 76, 78, 80, 81, 84, 87, 88, 90, 92, 93, 96, 99, 100, 102, 104, 105, 108, 111, 112, 114, 116, 117, 120, 123, 124, 126, 128, 129, 132, 135
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 23 2022

Keywords

Comments

From Bernard Schott, Aug 06 2023: (Start)
Equivalently: positive numbers that are divisible by 3 or by 4.
Proof (similar to the proof proposed by Robert Israel in A355641).
If k is divisible by 3, then k is in the sequence because k = k/3 + k/3 + k/3.
If k is divisible by 4, then k is in the sequence because k = k/2 + k/4 + k/4.
Moreover, if k is positive and divisible by 6 (A008588), then k = k/3 + k/3 + k/3, but k is also in the sequence because k = k/2 + k/3 + k/6.
Conversely, to show that every term of this sequence is divisible by 3 or by 4, we consider all positive integer solutions of the equation 1 = 1/a + 1/b + 1/c. Without loss of generality, we may assume a <= b <= c, then 3/a >= 1/a + 1/b + 1/c = 1. So a <= 3. Similarly, given a, we have 2/b >= 1/b + 1/c = 1 - 1/a, so b <= 2/(1 - 1/a).
-> if a = 1, then 1 = 1 + 1/b + 1/c; this equation has clearly no solution.
-> if a = 2, then 1/2 = 1/b + 1/c with b <= 2/(1 - 1/2) = 4; in this case, there are two solutions: (a,b,c) = (2,3,6) or (a,b,c) = (2,4,4).
-> if a = 3, then 2/3 = 1/b + 1/c with b <= 2/(1 - 1/3) = 3; in this case, there is one solution: (a,b,c) = (3,3,3).
It turns out that there are only 3 solutions with a <= b <= c. Each corresponds to a possible pattern k = k/a + k/b + k/c for writing k as the sum of 3 of its divisors, which works when k is divisible by 3 or by 4. (End)
From David A. Corneth, Aug 07 2023: (Start)
Proof that a(n + 6) = a(n) + 12.
As k is in the sequence, k = k/d1 + k/d2 + k/d3 where d1, d2 and d3 | k and they are not necessarily distinct. By discussion above from Bernard Schott, Aug 06 2023, (d1, d2, d3) are in {(2, 3, 6), (2, 4, 4), (3, 3, 3)}. The lcm of these tuples are 6, 4 and 3 respectively. So any number k in the sequence is divisible by 3, 4 or 6.
This tells us that if k is in the sequence then k + 12 is in the sequence since k + 12 is divisible by one of 3, 4 or 6 since lcm(3, 4, 6) = 12.
So we can write a(n + m) = a(n) + 12 for some m. Inspection gives m = 6 so a(n + 6) = a(n) + 12. (End)

Examples

			6 is in the sequence since it can be written as the sum of 3 of its (not necessarily distinct) divisors: 6 = 1+2+3 = 2+2+2 with 1|6, 2|6, and 3|6.
		

Crossrefs

Numbers k that can be written as the sum of j divisors of k (not necessarily distinct) for j=1..10: A000027 (j=1), A299174 (j=2), this sequence (j=3), A354591 (j=4), A355641 (j=5), A356609 (j=6), A356635 (j=7), A356657 (j=8), A356659 (j=9), A356660 (j=10).
Equals positive terms of A008585 union A008586.

Programs

  • Mathematica
    q[n_, k_] := AnyTrue[Tuples[Divisors[n], k], Total[#] == n &]; Select[Range[135], q[#, 3] &] (* Amiram Eldar, Aug 21 2022 *)
    Table[2n + (Sin[Pi*n/3] + Sin[2*Pi*n/3])/Sqrt[3], {n, 100}] (* Wesley Ivan Hurt, Oct 30 2023 *)
    CoefficientList[Series[(3 - 2*x + 4*x^2 - 2*x^3 + 3*x^4)/((x - 1)^2*(1 + x^2 + x^4)), {x, 0, 80}], x] (* Wesley Ivan Hurt, Jul 17 2025 *)
  • PARI
    isok(k) = my(d=divisors(k)); forpart(p=k, if (setintersect(d, Set(p)) == Set(p), return(1)), , [3,3]); \\ Michel Marcus, Aug 21 2022
    
  • PARI
    is(n) = my(v = [3,4,6]); sum(i = 1, 3, n%v[i] == 0) > 0 \\ David A. Corneth, Oct 08 2022

Formula

a(n + 6) = a(n) + 12. - David A. Corneth, Oct 08 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - log(3)/4. - Amiram Eldar, Sep 10 2023
From Wesley Ivan Hurt, Oct 30 2023: (Start)
a(n) = 2*n + (sin(Pi*n/3) + sin(2*Pi*n/3))/sqrt(3).
a(n) = A005843(n) + A134667(n). (End)
From Wesley Ivan Hurt, Jul 17 2025: (Start)
G.f.: x*(3-2*x+4*x^2-2*x^3+3*x^4)/((x-1)^2*(1+x^2+x^4)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6). (End)

A002967 Egyptian fractions: number of solutions of 1 = 1/x_1 + ... + 1/x_n in positive integers.

Original entry on oeis.org

1, 1, 10, 215, 12231, 2025462, 1351857641, 6255560531733
Offset: 1

Views

Author

Keywords

Comments

Solutions differing only in the order of the x_i are counted as distinct.
All denominators in the expansion 1 = 1/x_1 + ... + 1/x_n are bounded by A000058(n-1) = A129871(n). - Max Alekseyev, Dec 30 2003

Examples

			For n=3 the 10 solutions are {2,3,6} (6 ways), {2,4,4} (3 ways), {3,3,3} (1 way).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D11.
  • D. Singmaster, "The number of representations of one as a sum of unit fractions," unpublished manuscript, 1972.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

a(7) from Jud McCranie
a(8) from John Dethridge, Jan 11 2004

A325618 Numbers m such that there exists an integer partition of m whose reciprocal factorial sum is 1.

Original entry on oeis.org

1, 4, 11, 18, 24, 31, 37, 44, 45, 50, 52, 57, 58, 65, 66, 70, 71, 73, 76, 78, 79, 83, 86, 87, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 107, 108, 109, 110, 112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
Conjecture: 137 is the greatest integer not in this sequence. - Charlie Neder, May 14 2019

Examples

			The sequence of terms together with an integer partition of each whose reciprocal factorial sum is 1 begins:
   1: (1)
   4: (2,2)
  11: (3,3,3,2)
  18: (3,3,3,3,3,3)
  24: (4,4,4,4,3,3,2)
  31: (4,4,4,4,3,3,3,3,3)
  37: (4,4,4,4,4,4,4,4,3,2)
  44: (4,4,4,4,4,4,4,4,3,3,3,3)
  45: (5,5,5,5,5,4,4,4,3,3,2)
  50: (4,4,4,4,4,4,4,4,4,4,4,4,2)
		

Crossrefs

Extensions

a(11)-a(55) from Charlie Neder, May 14 2019

A227610 Number of ways 1/n can be expressed as the sum of three distinct unit fractions: 1/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.

Original entry on oeis.org

1, 6, 15, 22, 30, 45, 36, 62, 69, 84, 56, 142, 53, 124, 178, 118, 67, 191, 74, 274, 227, 145, 87, 342, 146, 162, 216, 322, 100, 461, 84, 257, 304, 199, 435, 508, 79, 204, 360, 580, 115, 587, 98, 455, 618, 192, 129, 676, 217, 417, 369, 449, 119, 573, 543, 759, 367, 240, 166, 1236, 102, 261, 857, 428, 568, 717, 115, 537, 460, 1018, 155, 1126, 112, 276, 839
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2013

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdős and Straus.

Examples

			a(1)=1 because 1 = 1/2 + 1/3 + 1/6;
a(2)=6 because 1/2 = 1/3 + 1/7 + 1/42 = 1/3 + 1/8 + 1/24 = 1/3 + 1/9 + 1/18 = 1/3 + 1/10 + 1/15 = 1/4 + 1/5 + 1/20 = 1/4 + 1/6 + 1/12;
a(3)=15 because 1/3 = 1/x + 1/y + 1/z presented as {x,y,z}: {4,13,156}, {4,14,84}, {4,15,60}, {4,16,48}, {4,18,36}, {4,20,30}, {4,21,28}, {5,8,120}, {5,9,45}, {5,10,30}, {5,12,20}, {6,7,42}, {6,8,24}, {6,9,18}, {6,10,15}; etc.
		

Crossrefs

Cf. A227611 (2/n), A075785 (3/n), A073101 (4/n), A075248 (5/n), A227612.

Programs

  • Mathematica
    f[n_] := Length@ Solve[1/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 70]
Showing 1-10 of 55 results. Next