A020515 a(n) = 4^n - 2^n + 1.
1, 3, 13, 57, 241, 993, 4033, 16257, 65281, 261633, 1047553, 4192257, 16773121, 67100673, 268419073, 1073709057, 4294901761, 17179738113, 68719214593, 274877382657, 1099510579201, 4398044413953, 17592181850113, 70368735789057, 281474959933441, 1125899873288193
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..170
- Yves Aubry, Gary Mcguire, and Francois Rodier, A few more functions that are not APN infinitely often, arXiv:0909.2304 [math.AG], 2009.
- Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Programs
-
Magma
[4^n - 2^n + 1: n in [0..40]]; // Vincenzo Librandi, Apr 25 2011
-
Maple
with(numtheory,cyclotomic):seq(cyclotomic(6,2**i),i=0..24);
-
Mathematica
Array[4^# - 2^# + 1 &, 30, 0] (* or *) Cyclotomic[6, 2^Range[0, 29]] (* Paolo Xausa, Apr 02 2024 *) LinearRecurrence[{7,-14,8},{1,3,13},30] (* Harvey P. Dale, Aug 24 2024 *)
-
PARI
a(n)=4^n-2^n+1 \\ Charles R Greathouse IV, Jul 02 2013
-
Python
def A020515(n): return (1<
Chai Wah Wu, Mar 11 2025
Formula
From Mohammad K. Azarian, Jan 15 2009: (Start)
G.f.: 1/(1-4*x) - 1/(1-2*x) + 1/(1-x).
E.g.f.: e^(4*x) - e^(2*x) + e^x. (End)
Comments