cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A020523 a(n) = 3rd Euler polynomial evaluated at 2^n and multiplied by 4.

Original entry on oeis.org

-1, 9, 161, 1665, 14849, 124929, 1024001, 8290305, 66715649, 535298049, 4288675841, 34334572545, 274777243649, 2198620602369, 17590575431681, 140731045904385, 1125874137038849, 9007096175525889, 72057181721067521, 576459103035981825, 4611679421357621249, 36893461759140036609
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 4*8^n - 6*4^n + 1.
From Colin Barker, May 04 2015: (Start)
a(n) = 13*a(n-1) - 44*a(n-2) + 32*a(n-3) for n > 2.
G.f.: -(22*x-1)/((x-1)*(4*x-1)*(8*x-1)). (End)
E.g.f.: exp(x)*(4*exp(7*x) - 6*exp(3*x) + 1). - Elmo R. Oliveira, Feb 23 2025

A020526 a(n) = 6th Euler polynomial evaluated at 2^n.

Original entry on oeis.org

0, 2, 1332, 166376, 13651920, 973242272, 65499561792, 4294977781376, 278176525712640, 17908846064302592, 1149543810255025152, 73678889946730981376, 4718907718699422044160, 302120774441963815411712, 19339271338993904793894912, 1237826702489967325274341376
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(euler(6,2**i),i=0..24);
  • Mathematica
    Table[EulerE[6,2^n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
  • PARI
    concat(0, Vec(2*x*(15616*x^2+560*x+1)/((2*x-1)*(8*x-1)*(32*x-1)*(64*x-1)) + O(x^100))) \\ Colin Barker, May 04 2015

Formula

a(n) = 106*a(n-1)-3024*a(n-2)+22016*a(n-3)-32768*a(n-4) for n>3. - Colin Barker, May 04 2015
G.f.: 2*x*(15616*x^2+560*x+1) / ((2*x-1)*(8*x-1)*(32*x-1)*(64*x-1)). - Colin Barker, May 04 2015

A020524 a(n) = 4th Euler polynomial evaluated at 2^n.

Original entry on oeis.org

0, 2, 132, 3080, 57360, 983072, 16252992, 264241280, 4261413120, 68451041792, 1097364145152, 17575006177280, 281337537761280, 4502500115750912, 72048797944922112, 1152851135862702080, 18446181123756195840, 295143401579725586432, 4722330454072626511872, 75557575495538172231680
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(euler(4, 2^n), n=0..24);
  • Mathematica
    Table[EulerE[4,2^n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
  • PARI
    concat(0, Vec(-2*x*(40*x+1)/((2*x-1)*(8*x-1)*(16*x-1)) + O(x^100))) \\ Colin Barker, May 04 2015

Formula

From Colin Barker, May 04 2015: (Start)
a(n) = 2^n - 2^(1+3*n) + 16^n.
a(n) = 26*a(n-1) - 176*a(n-2) + 256*a(n-3) for n > 2.
G.f.: -2*x*(40*x+1)/((2*x-1)*(8*x-1)*(16*x-1)). (End)
E.g.f.: exp(2*x)*(exp(14*x) - 2*exp(6*x) + 1). - Elmo R. Oliveira, Feb 22 2025

A059341 Triangle giving numerators of coefficients of Euler polynomials, highest powers first.

Original entry on oeis.org

1, 1, -1, 1, -1, 0, 1, -3, 0, 1, 1, -2, 0, 1, 0, 1, -5, 0, 5, 0, -1, 1, -3, 0, 5, 0, -3, 0, 1, -7, 0, 35, 0, -21, 0, 17, 1, -4, 0, 14, 0, -28, 0, 17, 0, 1, -9, 0, 21, 0, -63, 0, 153, 0, -31, 1, -5, 0, 30, 0, -126, 0, 255, 0, -155, 0, 1, -11, 0, 165, 0, -231, 0, 2805, 0, -1705, 0, 691, 1, -6, 0, 55, 0, -396, 0, 1683, 0, -3410, 0, 2073, 0, 1, -13
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Examples

			1; x-1/2; x^2-x; x^3-3*x^2/2+1/4; ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14b].

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do for k from n to 0 by -1 do printf(`%d,`,numer(coeff(euler(n,x), x, k))) od:od:
  • Mathematica
    Numerator[Table[Reverse[CoefficientList[Series[EulerE[n, x], {x, 0, 20}], x]], {n, 0, 10}]]//Flatten (* G. C. Greubel, Jan 07 2017 *)

Extensions

More terms from James Sellers, Jan 29 2001

A059342 Triangle giving denominators of coefficients of Euler polynomials, highest powers first.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 4, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Examples

			1; x-1/2; x^2-x; x^3-3*x^2/2+1/4; ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14b].

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do for k from n to 0 by -1 do printf(`%d,`,denom(coeff(euler(n,x), x, k))) od:od:
  • Mathematica
    Denominator[Table[Reverse[CoefficientList[Series[EulerE[n, x], {x, 0, 20}], x]], {n, 0, 10}]] (* G. C. Greubel, Jan 07 2017 *)

Extensions

More terms from James Sellers, Jan 29 2001
Showing 1-5 of 5 results.