A071321 Alternating sum of all prime factors of n; primes nondecreasing, starting with the least prime factor: A020639(n).
0, 2, 3, 0, 5, -1, 7, 2, 0, -3, 11, 3, 13, -5, -2, 0, 17, 2, 19, 5, -4, -9, 23, -1, 0, -11, 3, 7, 29, 4, 31, 2, -8, -15, -2, 0, 37, -17, -10, -3, 41, 6, 43, 11, 5, -21, 47, 3, 0, 2, -14, 13, 53, -1, -6, -5, -16, -27, 59, -2, 61, -29, 7, 0, -8
Offset: 1
Keywords
Examples
72 = 2*2*2*3*3, therefore a(72) = 2 - 2 + 2 - 3 + 3 = 2; 90 = 2*3*3*5, therefore a(90) = 2 - 3 + 3 - 5 = -3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a071321 1 = 0 a071321 n = sum $ zipWith (*) a033999_list $ a027746_row n -- Reinhard Zumkeller, Jun 01 2013
-
Mathematica
Join[{0},Table[Total[Times@@@Partition[Riffle[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[n]],{1,-1},{2,-1,2}],2]],{n,2,100}]] (* Harvey P. Dale, Sep 23 2015 *)
-
Python
from sympy import factorint def A071321(n): fs = factorint(n,multiple=True) return sum(fs[::2])-sum(fs[1::2]) # Chai Wah Wu, Aug 23 2021
Comments