cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A378771 a(n) is the least k such that the last k digits of m = A020666(n)^n contain all 10 possible digits (0 through 9).

Original entry on oeis.org

10, 10, 10, 11, 13, 11, 13, 17, 15, 16, 15, 15, 16, 18, 17, 15, 17, 15, 13, 16, 17, 15, 24, 17, 23, 16, 19, 20, 20, 22, 22, 25, 32, 17, 20, 23, 20, 19, 19, 23, 19, 14, 21, 19, 17, 25, 22, 17, 27, 19, 24, 13, 20, 28, 18, 33, 26, 18, 33, 22, 23, 20, 25, 25, 25, 22
Offset: 1

Views

Author

David A. Corneth, Dec 06 2024

Keywords

Comments

A conjecture over at A020666 says that A020666(n) = 2 for n >= 189. Perhaps looking at last digits and some modular arithmetic leads to a proof.
A020666(189) = 2 and a(189) = 33 so the last 33 digits of 2^189 contain all 10 digits. Therefore for k = 189 + 4*5^(33-1) the last 33 digits of 2^k contain all 10 possible digits.

Examples

			a(4) = 11 since m = A020666(4)^4 = 763^4 = 338920744561. The last 11 digits contain all 10 possible digits (0 through 9) but the last 10 digits do not; 3 is missing in the last 10 digits.
		

Crossrefs

Programs

  • PARI
    a(n) = {
    	if(n == 1, return(10));
    	my(i, todo = 10, v = vector(10), d);
    	for(i = 2, oo,
    		d = digits(i^n);
    		if(#Set(d) == 10,
    			forstep(i = #d, 1, -1,
    				if(v[d[i]+1] == 0,
    					v[d[i]+1] = 1;
    					todo--;
    					if(todo == 0,
    						return(#d - i + 1))))));
    }

A020667 Least n-th power containing every digit.

Original entry on oeis.org

1023456789, 1026753849, 12584301976, 338920744561, 2817036000549, 16157819263041, 1727094849536, 13685690504052736, 1628413597910449, 3656158440062976, 2384185791015625, 129746337890625, 1490116119384765625, 168377826559400929, 2862423051509815793
Offset: 1

Views

Author

Keywords

Comments

It is extremely probable that a(n) = 2^n for all n >= 169.

Crossrefs

Programs

  • Python
    def a(n):
        if n == 1: return 1023456789
        a020667n = 2
        while not(len(set(str(a020667n**n))) == 10): a020667n += 1
        return a020667n**n
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jul 04 2021

Formula

a(n) = A020666(n)^n. - Seiichi Manyama, Dec 05 2024

A217368 Smallest number having a power that in decimal has exactly n copies of all ten digits.

Original entry on oeis.org

32043, 69636, 643905, 421359, 320127, 3976581, 47745831, 15763347, 31064268, 44626422, 248967789, 85810806, 458764971, 500282265, 2068553967, 711974055, 2652652791, 901992825, 175536645, 3048377607, 3322858521, 1427472867, 3730866429, 9793730157
Offset: 1

Views

Author

James G. Merickel, Oct 01 2012

Keywords

Comments

The exponents that produce the number with a fixed number of copies of each digit are listed in sequence A217378. See there for further comments.
Since we allow A217378(n)=1, the sequence is well defined, with the upper bound a(n) <= 100...99 ~ 10^(10n-1) (n copies of each digit, sorted in increasing order, except for one "1" permuted to the first position). - M. F. Hasler, Oct 05 2012
What is the minimum value of a(n)? Can it be proved that a(n) > 2 for all n? - Charles R Greathouse IV, Oct 16 2012

Examples

			The third term raised to the fifth power (A217378(3)=5), 643905^5 = 110690152879433875483274690625, has three copies of each digit (in its decimal representation), and no number smaller than 643905 has a power with this feature.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2, t = Table[n, {10}], r = Range[0, 9]}, While[c = Count[ IntegerDigits[k^Floor[ Log[k, 10^(10 n)]]], #] & /@ r; c != t, k++]; k] (* Robert G. Wilson v, Nov 28 2012 *)
  • PARI
    is(n,k)=my(v);for(e=ceil((10*n-1)*log(10)/log(k)), 10*n*log(10)/log(k), v=vecsort(digits(k^e)); for(i=1,9,if(v[i*n]!=i-1 || v[i*n+1]!=i, return(0))); return(1)); 0
    a(n)=my(k=2); while(!is(n,k),k++); k \\ Charles R Greathouse IV, Oct 16 2012

Extensions

a(13)-a(14) from James G. Merickel, Oct 06 2012 and Oct 08 2012
a(15)-a(16) from Charles R Greathouse IV, Oct 17 2012
a(17)-a(19) from Charles R Greathouse IV, Oct 18 2012
a(20) from Charles R Greathouse IV, Oct 22 2012
a(21)-a(24) from Giovanni Resta, May 05 2017

A112388 a(n) is the smallest prime p such that p^n contains every digit.

Original entry on oeis.org

10123457689, 101723, 5437, 2339, 1009, 257, 139, 173, 83, 67, 31, 29, 37, 17, 17, 47, 19, 7, 5, 23, 23, 5, 11, 11, 17, 5, 5, 5, 5, 11, 5, 11, 11, 5, 5, 7, 5, 7, 3, 5, 5, 7, 7, 7, 3, 7, 3, 3, 5, 5, 5, 5, 3, 7, 7, 5, 3, 7, 5, 3, 3, 3, 3, 3, 3, 5, 3, 2, 3, 2, 3, 3, 3, 3, 5, 3, 3, 3, 2, 3, 5, 2
Offset: 1

Views

Author

Tanya Khovanova, Dec 05 2005

Keywords

Comments

Conjecture: a(n)=2 for all n>168. Checked up to n = 20000. - Robert Israel, Aug 28 2020

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      k:= 1:
      do k:= nextprime(k);
        if convert(convert(k^n,base,10),set) = {$0..9} then return k fi
      od
    end proc:
    f(1):= 10123457689:
    map(f, [$1..100]); # Robert Israel, Aug 28 2020
  • Mathematica
    f[n_] := Block[{k = 1}, While[ Union@IntegerDigits[ Prime[k]^n] != {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, k++ ]; Prime[k]]; Array[f, 82] (* Robert G. Wilson v, Dec 06 2005 *)
  • Python
    from sympy import nextprime
    def a(n):
        if n == 1: return 10123457689
        p = 2
        while not(len(set(str(p**n))) == 10): p = nextprime(p)
        return p
    print([a(n) for n in range(1, 83)]) # Michael S. Branicky, Jul 04 2021

Extensions

More terms from Robert G. Wilson v, Dec 06 2005

A178960 Numbers n such that n! contains every digit at least once.

Original entry on oeis.org

23, 27, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101
Offset: 1

Views

Author

Michel Lagneau, Dec 31 2010

Keywords

Examples

			23 is in the sequence because 23! = 25852016738884976640000 contains every
  digit at least once.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..101] | Seqset(Intseq(Factorial(n))) eq {0..9}]; // Bruno Berselli, May 17 2011
  • Maple
    with(numtheory):Digits:=200:B:={0,1,2,3,4,5,6,7,8,9}: T:=array(1..250) : for
      p from 1 to 200 do:ind:=0:n:=p!:l:=length(n):n0:=n:s:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v : T[m]:=u:od: A:=convert(T,set):z:=nops(A):if A intersect B = B and ind=0 then ind:=1: printf(`%d, `,p):else fi:od:
  • Mathematica
    Select[Range[101], Length[Union[IntegerDigits[#!]]] == 10 &]

A217535 Least number having in its decimal representation each digit n times.

Original entry on oeis.org

1023456789, 10012233445566778899, 100011222333444555666777888999, 1000011122223333444455556666777788889999, 10000011112222233333444445555566666777778888899999, 100000011111222222333333444444555555666666777777888888999999
Offset: 1

Views

Author

M. F. Hasler, Oct 05 2012

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(1,0$n,1$(n-1),seq(i$n, i=2..9))):
    seq(a(n), n=1..10);  # Alois P. Heinz, Jun 25 2017
  • PARI
    A217535(n)=sum(d=1,9,10^(n-(d==1))\9*d*10^(n*(9-d)))+10^(10*n-1)

Formula

a(n) ~ 10^(10n-1). See PARI code for an exact formula.
Showing 1-6 of 6 results.