A020793 Decimal expansion of 1/6.
1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0
References
- Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Springer, 2013, see p. 224.
Links
- Wikipedia, Poisson's constant.
- Index entries for linear recurrences with constant coefficients, signature (1).
Crossrefs
Programs
-
Mathematica
RealDigits[1/6,10,120][[1]] (* or *) PadRight[{1},120,{6}] (* Harvey P. Dale, Dec 30 2018 *)
-
PARI
a(n)=6-5*!n \\ M. F. Hasler, Oct 24 2011
Formula
a(n) = 6^n mod 10. - Zerinvary Lajos, Nov 26 2009
Equals Sum_{k>=1} 1/7^k. - Bruno Berselli, Jan 03 2014
10 * 1/6 = 5/3 = (5/2 R)/(3/2 R) = Cp(1)/Cv(1) = A272002/A272001, with R = A081822 (or A070064). - Natan Arie Consigli, Jul 10 2016
G.f.: (1 + 5*x)/(1 - x). - Ilya Gutkovskiy, Jul 10 2016
Equals Sum_{k>=1} 1/(k*Pi)^2. - Maciej Kaniewski, Sep 14 2017
Equals Sum_{k>=1} (zeta(2*k)-1)/4^k. - Amiram Eldar, Jun 08 2021
K_{n>=2} 2*n/(2*n - 3) = 5/3. (see Clawson at p. 224). - Stefano Spezia, Jul 01 2024
E.g.f.: 6*exp(x) - 5. - Elmo R. Oliveira, Aug 05 2024
Comments