cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A008588 Nonnegative multiples of 6.

Original entry on oeis.org

0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324, 330, 336, 342, 348
Offset: 0

Views

Author

Keywords

Comments

For n > 3, the number of squares on the infinite 3-column half-strip chessboard at <= n knight moves from any fixed point on the short edge.
Second differences of A000578. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A001018(n). - Reinhard Zumkeller, Feb 24 2009
These numbers can be written as the sum of four cubes (i.e., 6*n = (n+1)^3 + (n-1)^3 + (-n)^3 + (-n)^3). - Arkadiusz Wesolowski, Aug 09 2013
A122841(a(n)) > 0 for n > 0. - Reinhard Zumkeller, Nov 10 2013
Surface area of a cube with side sqrt(n). - Wesley Ivan Hurt, Aug 24 2014
a(n) is representable as a sum of three but not two consecutive nonnegative integers, e.g., 6 = 1 + 2 + 3, 12 = 3 + 4 + 5, 18 = 5 + 6 + 7, etc. (see A138591). - Martin Renner, Mar 14 2016 (Corrected by David A. Corneth, Aug 12 2016)
Numbers with three consecutive divisors: for some k, each of k, k+1, and k+2 divide n. - Charles R Greathouse IV, May 16 2016
Numbers k for which {phi(k),phi(2k),phi(3k)} is an arithmetic progression. - Ivan Neretin, Aug 12 2016

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.

Crossrefs

Essentially the same as A008458.
Cf. A044102 (subsequence).

Programs

Formula

From Vincenzo Librandi, Dec 24 2010: (Start)
a(n) = 6*n = 2*a(n-1) - a(n-2).
G.f.: 6*x/(1-x)^2. (End)
a(n) = Sum_{k>=0} A030308(n,k)*6*2^k. - Philippe Deléham, Oct 24 2011
a(n) = Sum_{k=2n-1..2n+1} k. - Wesley Ivan Hurt, Nov 22 2015
From Ilya Gutkovskiy, Aug 12 2016: (Start)
E.g.f.: 6*x*exp(x).
Convolution of A010722 and A057427.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/6 = A002162*A020793. (End)
a(n) = 6 * A001477(n). - David A. Corneth, Aug 12 2016

A364895 Decimal expansion of the 4-volume of the unit regular pentachoron (5-cell).

Original entry on oeis.org

0, 2, 3, 2, 9, 2, 3, 7, 4, 7, 6, 5, 6, 2, 2, 8, 0, 9, 3, 3, 7, 5, 9, 5, 5, 5, 9, 0, 4, 9, 2, 8, 4, 1, 2, 7, 4, 5, 2, 5, 0, 6, 4, 4, 1, 2, 4, 5, 9, 5, 3, 3, 9, 2, 9, 6, 1, 1, 5, 5, 1, 7, 9, 6, 3, 9, 6, 9, 2, 9, 2, 6, 3, 0, 8, 7, 2, 7, 1, 3, 4, 3, 6, 8, 9, 0, 0, 1, 5, 0, 0, 8, 7, 2, 7, 8, 9, 8, 2, 0
Offset: 0

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of sqrt(5)/96.
In general, the n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)).

Examples

			Equals 0.02329237476562280933...
		

Crossrefs

Decimal expansion of 4-volumes: this sequence (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), A364896 (120-cell), A364897 (600-cell).
Decimal expansion of the n-volume of the unit regular n-simplex: A120011 (n=2), A020829 (n=3), this sequence (n=4).

Programs

  • Mathematica
    First[RealDigits[Sqrt[5]/96, 10, 100, -1]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    sqrt(5)/96

A177735 a(0)=1, a(n)=A002445(n)/6 for n>=1.

Original entry on oeis.org

1, 1, 5, 7, 5, 11, 455, 1, 85, 133, 55, 23, 455, 1, 145, 2387, 85, 1, 319865, 1, 2255, 301, 115, 47, 7735, 11, 265, 133, 145, 59, 9464455, 1, 85, 10787, 5, 781, 23350145, 1, 5, 553, 38335, 83, 567385, 1, 10235, 45353, 235, 1, 750295, 1, 5555, 721, 265, 107
Offset: 0

Views

Author

Paul Curtz, May 12 2010

Keywords

Comments

For n>=1: denominators of the Bernoulli numbers (A002445) divided by 6.
All entries are odd.
a(n)= A002445(n) / A020793(n).
5 divides a(2*n) for n>=1.
These numbers also equal to the lengths of the repeating patterns for the excluded integer values of c/6, when both p^n + c and p^n - c are prime, for an infinite number of primes p>2, and a given integer n>0, arising from the union of one or more prime-based modulo cycles, determined by the divisors of n. See A005097 for details and connection to the von Staudt-Clausen Theorem below. - Richard R. Forberg, Jul 19 2016

Crossrefs

Programs

  • Maple
    A002445 := proc(n) bernoulli(2*n) ; denom(%) ; end proc:
    A177735 := proc(n) if n = 0 then 1; else A002445(n)/6 ; end if; end proc:
    seq(A177735(n),n=0..60) ; # R. J. Mathar, Aug 15 2010
  • Mathematica
    Join[{1},Denominator[BernoulliB[Range[2,120,2]]]/6] (* Harvey P. Dale, Oct 19 2012 *)
    result = {}; Do[prod = 1; Do[If[PrimeQ[2*Divisors[n][[i]] + 1], prod *= (2*Divisors[n][[i]] + 1)], {i, 2, Length[Divisors[n]]}];
    AppendTo[result, prod] , {n, 1, 100}]  ; result (* Richard R. Forberg, Jul 19 2016 *)
  • PARI
    a(n)=
    {
        my(bd=1);
        forprime (p=5, 2*n+1, if( (2*n)%(p-1)==0, bd*=p ) );
        bd;
    }
    /* Joerg Arndt, May 06 2012 */
    
  • PARI
    a(n)=if(n<2, return(1)); my(s=1); fordiv(n,d, if(isprime(2*d+1) && d>1, s *= 2*d+1)); s \\ Charles R Greathouse IV, Jul 20 2016
    
  • Sage
    def A177735(n):
        if n == 0: return 1
        M = map(lambda i: i+1, divisors(2*n))
        return mul(filter(lambda s: is_prime(s), M))//6
    print([A177735(n) for n in (0..53)]) # Peter Luschny, Feb 20 2016

Formula

a(n) = denominator(BernoulliB(2*n, 1/2))/(3*2^(2*n)). - Jean-François Alcover, Apr 16 2013
A simple direct calculation of the denominators, for n>=1, is based on the von Staudt-Clausen Theorem: Product{d|n}(2d+1), for d>1 and 2d+1 prime. See in the Mathematica section below. - Richard R. Forberg, Jul 19 2016

A341906 Decimal expansion of the moment of inertia of a solid regular dodecahedron with a unit mass and a unit edge length.

Original entry on oeis.org

6, 0, 7, 3, 5, 5, 5, 0, 3, 7, 4, 1, 6, 3, 9, 3, 2, 7, 1, 9, 9, 8, 5, 9, 2, 4, 3, 6, 0, 1, 7, 3, 2, 5, 7, 7, 2, 7, 3, 9, 4, 7, 0, 5, 3, 4, 1, 6, 1, 6, 5, 0, 1, 0, 8, 2, 1, 8, 8, 3, 3, 0, 8, 5, 7, 0, 0, 3, 4, 3, 8, 6, 9, 9, 9, 5, 8, 1, 3, 0, 3, 5, 9, 0, 5, 4, 0
Offset: 0

Views

Author

Amiram Eldar, Jun 04 2021

Keywords

Comments

The moments of inertia of the five Platonic solids were apparently first calculated by the Canadian physicist John Satterly (1879-1963) in 1957.
The moment of inertia of a solid regular dodecahedron with a uniform mass density distribution, mass M, and edge length L is I = c*M*L^2, where c is this constant.
The corresponding values of c for the other Platonic solids are:
Tetrahedron: 1/20 (= A020761/10).
Octahedron: 1/10 (= A000007).
Cube: 1/6 (= A020793).
Icosahedron: (3 + sqrt(5))/20 (= A104457/10).

Examples

			0.60735550374163932719985924360173257727394705341616...
		

Crossrefs

Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798.

Programs

  • Mathematica
    RealDigits[(95 + 39*Sqrt[5])/300, 10, 100][[1]]

Formula

Equals (95 + 39*sqrt(5))/300.
Equals (28 + 39*phi)/150, where phi is the golden ratio (A001622).

A364896 Decimal expansion of the 4-volume of the unit regular 120-cell.

Original entry on oeis.org

7, 8, 7, 8, 5, 6, 9, 8, 1, 0, 3, 4, 3, 3, 7, 9, 3, 3, 9, 9, 2, 1, 1, 6, 8, 5, 9, 1, 1, 3, 8, 8, 7, 4, 3, 6, 4, 9, 6, 4, 0, 8, 9, 8, 5, 8, 8, 1, 5, 3, 1, 4, 0, 8, 9, 0, 2, 7, 4, 5, 6, 3, 9, 5, 0, 3, 6, 0, 4, 3, 1, 3, 1, 4, 3, 6, 6, 3, 1, 1, 3, 5, 2, 1, 7, 9, 0, 5, 3, 9, 4, 7, 6, 7, 6, 0, 3, 7
Offset: 3

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of (1575+705*sqrt(5))/4.

Examples

			Equals 787.85698103433793399211...
		

Crossrefs

Decimal expansion of 4-volumes: A364895 (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), this sequence (120-cell), A364897 (600-cell).
Cf. A102769 (decimal expansion of the volume of the unit regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[(1575 + 705*Sqrt[5])/4, 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    (1575+705*sqrt(5))/4

A364897 Decimal expansion of the 4-volume of the unit regular 600-cell.

Original entry on oeis.org

2, 6, 4, 7, 5, 4, 2, 4, 8, 5, 9, 3, 7, 3, 6, 8, 5, 6, 0, 2, 5, 5, 7, 3, 3, 5, 4, 2, 9, 5, 7, 0, 4, 7, 6, 4, 7, 1, 5, 0, 3, 8, 6, 4, 7, 4, 7, 5, 7, 2, 0, 3, 5, 7, 7, 6, 6, 9, 3, 1, 0, 7, 7, 8, 3, 8, 1, 5, 7, 5, 5, 7, 8, 5, 2, 3, 6, 2, 8, 0, 6, 2, 1, 3, 4, 0, 0, 9, 0, 0, 5, 2, 3, 6, 7, 3, 8, 9, 2
Offset: 2

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of (50+25*sqrt(5))/4.

Examples

			Equals 26.47542485937368560255...
		

Crossrefs

Decimal expansion of 4-volumes: A364895 (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), A364896 (120-cell), this sequence (600-cell).
Cf. A102208 (decimal expansion of the volume of the unit regular icosahedron).

Programs

  • Mathematica
    First[RealDigits[(50 + 25*Sqrt[5])/4, 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    (50+25*sqrt(5))/4

A021019 Decimal expansion of 1/15.

Original entry on oeis.org

0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Keywords

Examples

			0.06666666666666666666666666666666666666666666666666666...
		

Crossrefs

Formula

From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: 6*x/(1-x).
E.g.f.: 6*(exp(x) - 1).
a(n) = 6 for n >= 1. (End)

A234255 Decimal expansion of -B(12) = 691/2730, 13th Bernoulli number without sign.

Original entry on oeis.org

0, 2, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 5
Offset: 1

Views

Author

Paul Curtz, Dec 22 2013

Keywords

Comments

Essentially of period 6: repeat [5, 3, 1, 1, 3, 5] = A110551(n+3).
691*3663 = 2531133. See A021277.
Seventh part of the constant c=0.6323809537553113569215686274509803711... .
B(24) - B(12) = -86580. See A002882.

Examples

			0.2531135531135531135531135531135531135531135...
		

Crossrefs

Programs

  • Magma
    [0,2] cat &cat [[5, 3, 1, 1, 3, 5]^^30]; // Wesley Ivan Hurt, Jun 28 2016
  • Maple
    A234255:=n->[5, 3, 1, 1, 3, 5][(n mod 6)+1]: 0,2,seq(A234255(n), n=0..100); # Wesley Ivan Hurt, Jun 28 2016
  • Mathematica
    Join[{0},RealDigits[-BernoulliB[12],10,120][[1]]] (* or *) PadRight[{0,2}, 120, {3,5,5,3,1,1}] (* Harvey P. Dale, Dec 30 2013 *)
  • PARI
    default(realprecision, 120);
    -bernfrac(12) + 0. \\ Rick L. Shepherd, Jan 15 2014
    

Formula

From Chai Wah Wu, Jun 04 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + a(n-3) for n > 5.
G.f.: x^2*(2 + x - 3*x^2 + 3*x^3)/((1 - x)*(1 - x + x^2)). (End)
From Wesley Ivan Hurt, Jun 28 2016: (Start)
a(n) = a(n-6) for n>8.
a(n) = (9 - 6*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/3 for n>2. (End)

Extensions

Offset corrected by and more terms from Rick L. Shepherd, Jan 15 2014

A271427 a(n) = 7^n - a(n-1) for n>0, a(0)=0.

Original entry on oeis.org

0, 7, 42, 301, 2100, 14707, 102942, 720601, 5044200, 35309407, 247165842, 1730160901, 12111126300, 84777884107, 593445188742, 4154116321201, 29078814248400, 203551699738807, 1424861898171642, 9974033287201501, 69818233010410500, 488727631072873507, 3421093417510114542
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 13 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence b(n) = k^n - b(n-1), where n>0 and b(0)=0, is k*x/((1 + x)*(1 - k*x)). This recurrence gives the closed form b(n) = k*(k^n - (-1)^n)/(k + 1).

Examples

			a(2) = 7^2 - a(2-1) = 49 - 7 = 42.
a(4) = 7^4 - a(4-1) = 2401 - 301 = 2100.
		

Crossrefs

Cf. similar sequences with the recurrence b(n) = k^n - b(n-1): A125122 (k=1), A078008 (k=2), A054878 (k=3), A109499 (k=4), A109500 (k=5), A109501 (k=6), this sequence (k=7), A093134 (k=8), A001099 (k=n).

Programs

  • Mathematica
    LinearRecurrence[{6, 7}, {0, 7}, 30]
    Table[7 (7^n - (-1)^n)/8, {n, 0, 30}]
  • PARI
    vector(50, n, n--; 7*(7^n-(-1)^n)/8) \\ Altug Alkan, Apr 13 2016
    
  • Python
    for n in range(0,10**2):print((int)((7*(7**n-(-1)**n))/8))
    # Soumil Mandal, Apr 14 2016

Formula

O.g.f.: 7*x/(1 - 6*x - 7*x^2).
E.g.f.: (7/8)*(exp(7*x) - exp(-x)).
a(n) = 6*a(n-1) + 7*a(n-2).
a(n) = 7*(7^n - (-1)^n)/8.
a(n) = 7*A015552(n).
Sum_{n>0} 1/(a(n) + a(n-1)) = 1/6 = A020793.
Limit_{n->oo} a(n-1)/a(n) = 1/7 = A020806.

A274981 Decimal expansion of gamma(2) = 7/5.

Original entry on oeis.org

1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Natan Arie Consigli, Aug 31 2016

Keywords

Comments

gamma(n) = Cp(n)/Cv(n) is the n-th Poisson's constant. For the definition of Cp and Cv see A272002.

Crossrefs

Cf. A020793 = gamma(1).

Formula

7/5 = (7/2 R)/(5/2 R) = Cp(2)/Cv(2) = A272003/A272002, with R = A081822 (or A070064).
Showing 1-10 of 10 results.