A020988 a(n) = (2/3)*(4^n-1).
0, 2, 10, 42, 170, 682, 2730, 10922, 43690, 174762, 699050, 2796202, 11184810, 44739242, 178956970, 715827882, 2863311530, 11453246122, 45812984490, 183251937962, 733007751850, 2932031007402, 11728124029610, 46912496118442, 187649984473770, 750599937895082
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..170 from Vincenzo Librandi)
- Andrei Asinowski, Cyril Banderier, and Benjamin Hackl, On extremal cases of pop-stack sorting, Permutation Patterns (Zürich, Switzerland, 2019) [link is not very stable].
- Andrei Asinowski, Cyril Banderier, and Benjamin Hackl, Flip-sort and combinatorial aspects of pop-stack sorting, arXiv:2003.04912 [math.CO], 2020.
- Peter Bala, A characterization of A002450, A020988 and A080674.
- Alexander E. Black, Monotone Paths on Polytopes: Combinatorics and Optimization, Ph. D. Dissertation, Univ. Calif. Davis (2024). See p. 59.
- Alexander Black and Jesús De Loera, Monotone paths on cross-polytopes, arXiv:2102.01237 [math.CO], Feb 2021
- John Brillhart and Peter Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.
- Nobushige Kurokawa, Zeta functions over F_1, Proc. Japan Acad., 81, Ser. A (2005), 180-184. See Theorem 3 (3).
- Jonathan L. Merzel, Ján Minač, Tung T. Nguyen, and Nguyên Duy Tân, On divisibility relation graphs, 2025. See p. 14.
- Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. See p.3.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Programs
-
Magma
[(2/3)*(4^n-1): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011
-
Maple
A020988 := proc(n) 2*(4^n-1)/3 ; end proc: # R. J. Mathar, Feb 19 2015
-
Mathematica
(2(4^Range[0, 30] - 1))/3 (* or *) LinearRecurrence[{5, -4}, {0, 2}, 30] (* Harvey P. Dale, Sep 25 2013 *)
-
PARI
vector(100, n, n--; (2/3)*(4^n-1)) \\ Altug Alkan, Oct 06 2015
-
PARI
Vec(2*z/((1-z)*(1-4*z)) + O(z^30)) \\ Altug Alkan, Oct 11 2015
-
Python
def A020988(n): return (2 * ((1 << (2 * n)) - 1)) // 3 # John Reimer Morales, Aug 05 2025
-
Scala
(((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * )).map(2 * )).scanLeft(0: BigInt)( + ) // _Alonso del Arte, Sep 12 2019
Formula
a(n) = 4*a(n-1) + 2, a(0) = 0.
a(n) = A026644(2*n).
E.g.f. : (2/3)*(exp(4*x)-exp(x)). - Paul Barry, May 18 2003
G.f.: 2*x/((1-x)*(1-4*x)). - R. J. Mathar, Sep 17 2008
a(n) = a(n-1) + 2^(2n-1), a(0) = 0. - Washington Bomfim, Jan 22 2011
a(n) = A193652(2*n). - Reinhard Zumkeller, Aug 08 2011
a(n) = 5*a(n-1) - 4*a(n-2) (n > 1), a(0) = 0, a(1) = 2. - L. Edson Jeffery, Mar 02 2012
a(n) = (2/3)*A024036(n). - Omar E. Pol, Mar 15 2012
a(n) = 2*A002450(n). - Yosu Yurramendi, Jan 24 2017
From Seiichi Manyama, Nov 24 2017: (Start)
Zeta_{GL(2)/F_1}(s) = Product_{k = 1..4} (s-k)^(-b(2,k)), where Sum b(2,k)*t^k = t*(t-1)*(t^2-1). That is Zeta_{GL(2)/F_1}(s) = (s-3)*(s-2)/((s-4)*(s-1)).
Zeta_{GL(2)/F_1}(s) = Product_{n > 0} (1 - (1/s)^n)^(-A295521(n)) = Product_{n > 0} (1 - x^n)^(-A295521(n)) = (1-3*x)*(1-2*x)/((1-4*x)*(1-x)) = 1 + Sum_{k > 0} a(k-1)*x^k (x=1/s). (End)
From Oboifeng Dira, May 29 2020: (Start)
a(n) = A078008(2n+1) (second bisection).
a(n) = Sum_{k=0..n} binomial(2n+1, ((n+2) mod 3)+3k). (End)
From John Reimer Morales, Aug 04 2025: (Start)
Extensions
Edited by N. J. A. Sloane, Sep 06 2006
Comments