cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001240 Expansion of 1/((1-2x)(1-3x)(1-6x)).

Original entry on oeis.org

1, 11, 85, 575, 3661, 22631, 137845, 833375, 5019421, 30174551, 181222405, 1087861775, 6528756781, 39177307271, 235078159765, 1410511939775, 8463200647741, 50779591044791, 304678708005925
Offset: 1

Views

Author

Keywords

Comments

Differences of reciprocals of unity.

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Right-hand column 2 in triangle A008969.
a(n) = A112492(n+1, 3).
Cf. A021029 (partial sums).

Programs

  • Maple
    A001240:=-1/((6*z-1)*(3*z-1)*(2*z-1)); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-3x)(1-6x)),{x,0,25}],x] (* or *) LinearRecurrence[{11,-36,36},{1,11,85},25] (* Harvey P. Dale, May 15 2011 *)
  • PARI
    a(n)=(6^n-2*3^n+2^n)/2 \\ Charles R Greathouse IV, Feb 19 2017

Formula

a(n) = 11a(n-1) - 36a(n-2) + 36a(n-3). - John W. Layman
a(n) = (6^n - 2*3^n + 2^n)/2. Also -x^2/6*Beta(x, 4) = Sum_{n>=0} a(n)*(-x/6)^n. Thus x^2*Beta(x, 4) = x - 11/6*x^2 + 85/36*x^3 - 575/216*x^4 + 3661/1296*x^5 - ... . - Vladeta Jovovic, Aug 09 2002
a(n) = Sum_{0<=i,j,k,<=n, i+j+k=n} 2^i*3^j*6^k. - Hieronymus Fischer, Jun 25 2007
a(n) = 2^n + 3^(n+1)*(2^n-1). - Hieronymus Fischer, Jun 25 2007
a(n) = Sum_{k = 0..n-1} 2^(n-2-k) * (3^n - 3^k). - J. M. Bergot, Feb 05 2018

A195116 a(n) = (2+3^n)*(3+2^n).

Original entry on oeis.org

12, 25, 77, 319, 1577, 8575, 48977, 286759, 1699817, 10137775, 60645377, 363332599, 2178384857, 13065493375, 78378545777, 470228096839, 2821239178697, 16927047127375, 101561119454177, 609363227843479, 3656168902513337, 21936982025631775
Offset: 0

Views

Author

Bruno Berselli, Sep 09 2011

Keywords

Crossrefs

Cf. A060013 ((1+2^n)*(2+1) with n>3).
Cf. A021029 (for the recurrence).

Programs

  • Magma
    [(2+3^n)*(3+2^n): n in [0..21]];
    
  • Mathematica
    Table[(2 + 3^n) (3 + 2^n), {n, 0, 30}] (* Vincenzo Librandi, Mar 26 2013 *)
  • PARI
    for(n=0, 21, print1((2+3^n)*(3+2^n)", "));
    
  • Python
    def a(n): return (2+3**n)*(3+2**n)
    print([a(n) for n in range(23)]) # Michael S. Branicky, Dec 25 2021

Formula

G.f.: (12-119*x+341*x^2-294*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-6*x)).
Sum_{i=0..n} a(i) = (1/10)*(12*6^n+45*3^n+40*2^n+60*n+23).
Showing 1-2 of 2 results.