1, 1, 1, 1, 3, 1, 1, 7, 11, 1, 1, 15, 85, 50, 1, 1, 31, 575, 1660, 274, 1, 1, 63, 3661, 46760, 48076, 1764, 1, 1, 127, 22631, 1217776, 6998824, 1942416, 13068, 1, 1, 255, 137845, 30480800, 929081776, 1744835904, 104587344, 109584, 1, 1, 511, 833375, 747497920, 117550462624, 1413470290176, 673781602752, 7245893376, 1026576, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 11, 1;
1, 15, 85, 50, 1;
1, 31, 575, 1660, 274, 1;
1, 63, 3661, 46760, 48076, 1764, 1;
1, 127, 22631, 1217776, 6998824, 1942416, 13068, 1; ...
The g.f.s for the rows are illustrated by:
Sum_{n>=0} (n+1)^(n-1)*exp((n+1)*x)*(-x)^n/n! = 1;
Sum_{n>=0} (n+1)^(n-2)*exp((n+1)*x)*(-x)^n/n! = 1 + 1*x/2!;
Sum_{n>=0} (n+1)^(n-3)*exp((n+1)*x)*(-x)^n/n! = 1 + 3*x/2!^2 + 1*x^2/3!;
Sum_{n>=0} (n+1)^(n-4)*exp((n+1)*x)*(-x)^n/n! = 1 + 7*x/2!^3 + 11*x^2/3!^2 + 1*x^3/4!;
Sum_{n>=0} (n+1)^(n-5)*exp((n+1)*x)*(-x)^n/n! = 1 + 15*x/2!^4 + 85*x^2/3!^3 + 50*x^3/4!^2 + 1*x^4/5!; ...
which are derived from a LambertW() identity. - _Paul D. Hanna_, Oct 20 2012
A021029
Expansion of 1/((1-x)*(1-2*x)*(1-3*x)*(1-6*x)).
Original entry on oeis.org
1, 12, 97, 672, 4333, 26964, 164809, 998184, 6017605, 36192156, 217414561, 1305276336, 7834033117, 47011340388, 282089500153, 1692601439928, 10155802087669, 60935393132460, 365614101138385
Offset: 0
-
[(-1+5*2^(n+2)-5*3^(n+2)+6^(n+2))/10: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
-
seq(-1/10 + 2^(n+1) - (9*3^n)/2 + (18*6^n)/5,n=0..40); # Robert Israel, Dec 05 2020
-
CoefficientList[Series[1/((1 - x)(1 - 2x)(1 - 3x)(1 - 6x)), {x, 0, 30}], x] (* Harvey P. Dale, Mar 14 2011 *)
A257894
Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (numerators).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 25, 85, 15, 1, 1, 137, 415, 575, 31, 1, 1, 49, 12019, 5845, 3661, 63, 1, 1, 363, 13489, 874853, 76111, 22631, 127, 1, 1, 761, 726301, 336581, 58067611, 952525, 137845, 255, 1, 1, 7129, 3144919, 129973303, 68165041
Offset: 1
Array of fractions begins:
1, 1, 1, 1, 1, 1, ...
1, 3/2, 7/4, 15/8, 31/16, 63/32, ...
1, 11/6, 85/36, 575/216, 3661/1296, 22631/7776, ...
1, 25/12, 415/144, 5845/1728, 76111/20736, 952525/248832, ...
1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ...
1, 49/20, 13489/3600, 336581/72000, 68165041/12960000, 483900263/86400000, ...
...
Row 2 (numerators) is A000225 (Mersenne numbers 2^k-1),
Row 3 is A001240 (Differences of reciprocals of unity),
Row 4 is A028037,
Row 5 is A103878,
Row 6 is not in the OEIS.
Column 2 (numerators) is A001008 (Wolstenholme numbers: numerator of harmonic number),
Column 3 is A027459,
Column 4 is A027462,
Column 5 is A072913,
Column 6 is not in the OEIS.
- Zhi-Dong Bai, Chern-Ching Chao, Hsien-Kuei Hwang and Wen-Qi Liang, On the variance of the number of maxima in random vectors and its applications, The Annals of Applied Probability 1998, Vol. 8, No. 3, 886-895.
- O. E. Barndorff-Nielsen and M. Sobel, On the distribution of the number of admissible points in a vector random sample, Theory Probab. Appl. 11, 249-269.
-
T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Numerator, {n, 1, 12}, {k, 1, n}] // Flatten
Comments