cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A162741 Fibonacci-Pascal triangle; same as Pascal triangle, but beginning another Pascal triangle to the right of each row starting at row 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 7, 7, 5, 3, 2, 1, 1, 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1, 1, 7, 22, 41, 51, 46, 33, 21, 13, 8, 5, 3, 2, 1, 1, 1, 8, 29, 63, 92, 97, 79, 54, 34, 21, 13, 8, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Mark Dols, Jul 12 2009, Jul 19 2009

Keywords

Comments

Intertwined Pascal-triangles;
the first five rows seen as numbers in decimal representation: row(n) = 110*row(n-1) + 1. - corrected by Reinhard Zumkeller, Jul 16 2013

Examples

			.                                           1
.                                       1,  1, 1
.                                   1,  2,  2, 1, 1
.                               1,  3,  4,  3, 2, 1, 1
.                           1,  4,  7,  7,  5, 3, 2, 1, 1
.                       1,  5, 11, 14, 12,  8, 5, 3, 2, 1, 1
.                   1,  6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1,1
.               1,  7, 22, 41, 51, 46, 33, 21,13, 8, 5, 3, 2,1,1
.           1,  8, 29, 63, 92, 97, 79, 54, 34,21,13, 8, 5, 3,2,1,1
.       1,  9, 37, 92,155,189,176,133, 88, 55,34,21,13, 8, 5,3,2,1,1
.    1,10, 46,129,247,344,365,309,221,143, 89,55,34,21,13, 8,5,3,2,1,1
. 1,11,56,175,376,591,709,674,530,364,232,144,89,55,34,21,13,8,5,3,2,1,1 .
		

Crossrefs

Cf. A005408 (row length), A000225 (row sums), A000045 (central terms), A007318, A136431.
Cf. A021113. - Mark Dols, Jul 18 2009
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A228074.

Programs

  • Haskell
    a162741 n k = a162741_tabf !! (n-1) !! (k-1)
    a162741_row n = a162741_tabf !! (n-1)
    a162741_tabf = iterate
       (\row -> zipWith (+) ([0] ++ row ++ [0]) (row ++ [0,1])) [1]
    -- Reinhard Zumkeller, Jul 16 2013
  • Mathematica
    T[, 1] = 1; T[n, k_] /; k == 2*n-2 || k == 2*n-1 = 1; T[n_, k_] := T[n, k] = T[n-1, k-1] + T[n-1, k]; Table[T[n, k], {n, 1, 9}, {k, 1, 2*n-1}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Reinhard Zumkeller *)

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k), T(n,1)=1 and for n>1: T(n,2*n-2) = T(n,2*n-1)=1. - Reinhard Zumkeller, Jul 16 2013

A165154 a(n) = 100*a(n-1) + (-9)^(n-1) for n>0, a(0)=0.

Original entry on oeis.org

0, 1, 91, 9181, 917371, 91743661, 9174307051, 917431236541, 91743118871131, 9174311930159821, 917431192628561611, 91743119266342945501, 9174311926602913490491, 917431192660573778585581, 91743119266054835992729771, 9174311926605506476065432061
Offset: 0

Views

Author

Mark Dols, Sep 05 2009

Keywords

Crossrefs

Programs

  • Magma
    [(1/109)*(100^n-(-9)^n): n in [0..20]]; // Vincenzo Librandi, Jun 10 2011
    
  • Mathematica
    LinearRecurrence[{91,900}, {0,1}, 40] (* G. C. Greubel, Feb 09 2023 *)
  • PARI
    Vec(x/((1+9*x)*(1-100*x)) + O(x^20)) \\ Colin Barker, Oct 02 2015
    
  • SageMath
    [(100^n-(-9)^n)/109 for n in range(41)] # G. C. Greubel, Feb 09 2023

Formula

From Colin Barker, Oct 02 2015: (Start)
a(n) = 91*a(n-1) + 900*a(n-2) for n>1, a(0)=0.
G.f.: x/((1+9*x)*(1-100*x)). (End)
E.g.f.: (1/109)*(exp(100*x) - exp(-9*x)). - G. C. Greubel, Feb 09 2023

Extensions

a(0) prepended by Joerg Arndt, Oct 02 2015

A164913 Expansion of x/(1-9*x-11*x^2+10*x^3).

Original entry on oeis.org

1, 9, 92, 917, 9175, 91742, 917433, 9174309, 91743124, 917431185, 9174311939, 91743119246, 917431192693, 9174311926553, 91743119266140, 917431192660413, 9174311926605727, 91743119266054686, 917431192660551041, 9174311926605503645
Offset: 1

Views

Author

Mark Dols, Aug 31 2009

Keywords

Crossrefs

Formula

a(n) = +9*a(n-1) +11*a(n-2) -10*a(n-3). - Joerg Arndt, May 14 2011
a(n) = 10*a(n-1)+F(n) for n=odd and a(n) = 10*a(n-1)-F(n) for n=even, with a(0) = 0 and F(n) is the n-th Fibonacci number.

A021222 Decimal expansion of 1/218.

Original entry on oeis.org

0, 0, 4, 5, 8, 7, 1, 5, 5, 9, 6, 3, 3, 0, 2, 7, 5, 2, 2, 9, 3, 5, 7, 7, 9, 8, 1, 6, 5, 1, 3, 7, 6, 1, 4, 6, 7, 8, 8, 9, 9, 0, 8, 2, 5, 6, 8, 8, 0, 7, 3, 3, 9, 4, 4, 9, 5, 4, 1, 2, 8, 4, 4, 0, 3, 6, 6, 9, 7, 2, 4, 7, 7, 0, 6, 4, 2, 2, 0, 1, 8, 3, 4, 8, 6, 2, 3, 8, 5, 3, 2, 1, 1, 0, 0, 9, 1, 7, 4
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0,0},RealDigits[1/218,10,120][[1]]] (* Harvey P. Dale, Feb 28 2013 *)

A021440 Decimal expansion of 1/436.

Original entry on oeis.org

0, 0, 2, 2, 9, 3, 5, 7, 7, 9, 8, 1, 6, 5, 1, 3, 7, 6, 1, 4, 6, 7, 8, 8, 9, 9, 0, 8, 2, 5, 6, 8, 8, 0, 7, 3, 3, 9, 4, 4, 9, 5, 4, 1, 2, 8, 4, 4, 0, 3, 6, 6, 9, 7, 2, 4, 7, 7, 0, 6, 4, 2, 2, 0, 1, 8, 3, 4, 8, 6, 2, 3, 8, 5, 3, 2, 1, 1, 0, 0, 9, 1, 7, 4, 3, 1, 1, 9, 2, 6, 6, 0, 5, 5, 0, 4, 5, 8, 7
Offset: 0

Views

Author

Keywords

Examples

			0.0022935779816513761467889908256880733944954128440...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[1/436, 10, 100, -1]] (* Paolo Xausa, Feb 13 2025 *)

A021876 Decimal expansion of 1/872.

Original entry on oeis.org

0, 0, 1, 1, 4, 6, 7, 8, 8, 9, 9, 0, 8, 2, 5, 6, 8, 8, 0, 7, 3, 3, 9, 4, 4, 9, 5, 4, 1, 2, 8, 4, 4, 0, 3, 6, 6, 9, 7, 2, 4, 7, 7, 0, 6, 4, 2, 2, 0, 1, 8, 3, 4, 8, 6, 2, 3, 8, 5, 3, 2, 1, 1, 0, 0, 9, 1, 7, 4, 3, 1, 1, 9, 2, 6, 6, 0, 5, 5, 0, 4, 5, 8, 7, 1, 5, 5, 9, 6, 3, 3, 0, 2, 7, 5, 2, 2, 9, 3
Offset: 0

Views

Author

Keywords

Comments

This constant, A021440, A021222 and A021113 all share, apart from initial digits, the same period of decimal digits of length A002322(109) = A002322(218) = A002322(436) = 108. - R. J. Mathar, Mar 19 2008

Crossrefs

Programs

  • Mathematica
    Join[{0,0},RealDigits[1/872,10,120][[1]]] (* Harvey P. Dale, Apr 08 2021 *)

A064737 Fibonacci sequence (A000045) mod 10 with carry.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 3, 2, 6, 8, 4, 3, 8, 1, 10, 1, 2, 4, 6, 0, 7, 7, 4, 2, 7, 9, 6, 6, 3, 10, 3, 4, 8, 2, 1, 4, 5, 9, 4, 4, 9, 3, 3, 7, 0, 8, 8, 6, 5, 2, 8, 0, 9, 9, 8, 8, 7, 6, 4, 1, 6, 7, 3, 1, 5, 6, 1, 8, 9, 7, 7, 5, 3, 9, 2, 2, 5, 7, 2, 10, 2, 3, 6, 9, 5, 5, 1, 7, 8, 5, 4, 10, 4, 5, 10, 5, 6, 2, 9, 1, 1
Offset: 0

Views

Author

Robert G. Wilson v, Oct 17 2001

Keywords

Comments

Observation (from Kaprekar) this sequence can be the reverse of 1/109 (A021113) which is recurring and has a period of 108 digits:
0.[009174311926605504587155963302752293577981651376146788\
990825688073394495412844036697247706422018348623853211]. - Eric Desbiaux, Oct 28 2008

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    f[0] = 0; f[1] = f[2] = 1; f[n_] := f[n] = Block[{k}, If[f[n - 2] + f[n - 3] >= 10, k = 1, k = 0]; Mod[f[n - 1] + f[n - 2], 10] + k]; Table[ f[n], {n, 0, 100} ]

A021549 Decimal expansion of 1/545.

Original entry on oeis.org

0, 0, 1, 8, 3, 4, 8, 6, 2, 3, 8, 5, 3, 2, 1, 1, 0, 0, 9, 1, 7, 4, 3, 1, 1, 9, 2, 6, 6, 0, 5, 5, 0, 4, 5, 8, 7, 1, 5, 5, 9, 6, 3, 3, 0, 2, 7, 5, 2, 2, 9, 3, 5, 7, 7, 9, 8, 1, 6, 5, 1, 3, 7, 6, 1, 4, 6, 7, 8, 8, 9, 9, 0, 8, 2, 5, 6, 8, 8, 0, 7, 3, 3, 9, 4, 4, 9, 5, 4, 1, 2, 8, 4, 4, 0, 3, 6, 6, 9, 7, 2, 4, 7, 7, 0, 6, 4, 2, 2, 0
Offset: 0

Views

Author

Keywords

Examples

			0.00183486238532110091743119266055045871559633... .
		

Crossrefs

Cf. A021113.

Programs

  • Mathematica
    Join[{0,0},RealDigits[1/545,10,120][[1]]] (* Harvey P. Dale, Jan 30 2019 *)

Formula

Equals A021113/5.
Showing 1-8 of 8 results.