cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022010 Initial members of prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20).

Original entry on oeis.org

5639, 88799, 284729, 626609, 855719, 1146779, 6560999, 7540439, 8573429, 17843459, 19089599, 24001709, 42981929, 43534019, 69156539, 74266259, 79208399, 80427029, 84104549, 87988709, 124066079, 128469149, 144214319, 157131419, 208729049, 218033729
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 179 (modulo 210). - Matt C. Anderson, May 26 2015

Examples

			a(100) = 2526962939, a(1000) = 80752495919, a(10000) = 2010407120789, a(100000) = 42609827234069, a(1000000) = 822249634821059. See illustration for asymptotic behavior. - _Hugo Pfoertner_, Jun 15 2020
		

Crossrefs

Cf. A022009 (prime septuplets of the first type), A332493.
Cf. A257124 (union of this and A022009), A343637 (septuplet following 10^n).
Cf. A357889.

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^8) | forall{p+r: r in [2, 8, 12, 14, 18, 20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015
    
  • Mathematica
    Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 8, 12, 14, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *)
    Select[Partition[Prime[Range[12021000]],7,1],Differences[#]=={2,6,4,2,4,2}&][[All,1]] (* or *) Select[Range[179,219*10^6,210], AllTrue[ #+{0,2,8,12,14,18,20},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 04 2019 *)
  • PARI
    forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+8) && isprime(p+12) && isprime(p+14) && isprime(p+18) && isprime(p+20), print1(p", "))) \\ Altug Alkan, Oct 01 2015. [This can be made 2x faster by inserting "p%210==179 &&" before or after "if(". - M. F. Hasler, Aug 04 2021]
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e9, 2,8,12,14,18,20); # Dana Jacobsen, Sep 30 2015
    

Formula

a(n) = 210*A357889(n) + 179. - Hugo Pfoertner, Nov 18 2022

Extensions

More terms from a Maple program by Matt C. Anderson, Dec 05 2013