A022095 Fibonacci sequence beginning 1, 5.
1, 5, 6, 11, 17, 28, 45, 73, 118, 191, 309, 500, 809, 1309, 2118, 3427, 5545, 8972, 14517, 23489, 38006, 61495, 99501, 160996, 260497, 421493, 681990, 1103483, 1785473, 2888956, 4674429, 7563385, 12237814, 19801199, 32039013, 51840212, 83879225, 135719437
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..960
- Élis Gardel da Costa Mesquita, Eudes Antonio Costa, Paula M. M. C. Catarino, and Francisco R. V. Alves, Jacobsthal-Mulatu Numbers, Latin Amer. J. Math. (2025) Vol. 4, No. 1, 23-45. See p. 24.
- Tanya Khovanova, Recursive Sequences
- José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.
- José L. Ramírez and Gustavo N. Rubiano, Properties and Generalizations of the Fibonacci Word Fractal, The Mathematica Journal, Vol. 16 (2014).
- Matty van Son, Uniqueness conjectures for extended Markov numbers, arXiv:1911.00746 [math.NT], 2019.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
GAP
List([0..40],n->4*Fibonacci(n)+Fibonacci(n+1)); # Muniru A Asiru, Mar 04 2018
-
Magma
a0:=1; a1:=5; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
-
Maple
with(combinat): a:= n-> 4*fibonacci(n)+fibonacci(n+1): seq(a(n), n=0..32); # Zerinvary Lajos, Oct 05 2007
-
Mathematica
f[n_] := (LucasL[n - 2] + 8*LucasL[n - 1] + 4*LucasL[n] + 2*LucasL[n + 1])/5; Array[f, 38, 0] (* or *) LinearRecurrence[{1, 1}, {1, 5}, 38] (* Robert G. Wilson v, Oct 22 2012 *)
-
PARI
a(n)=fibonacci(n-1)+5*fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
-
SageMath
A022095=BinaryRecurrenceSequence(1,1,1,5) [A022095(n) for n in range(41)] # G. C. Greubel, Jun 02 2025
Formula
a(n) = a(n-1) + a(n-2), n >= 2, a(0)=1, a(1)=5.
G.f.: (1+4*x)/(1-x-x^2).
a(n) = 4*Fibonacci(n) + Fibonacci(n+1), n >= 1. - Zerinvary Lajos, Oct 05 2007, corrected by R. J. Mathar, Apr 07 2011
a(n-1) = ((1 + sqrt(5))^n - (1 - sqrt(5))^n)/(2^n*sqrt(5)) + 2*((1 + sqrt(5))^(n-1) - (1 - sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 4*Fibonacci(n+2) - 3*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = (L(n-2) + 8*L(n-1) + 4*L(n) + 2*L(n+1))/5 for the Lucas numbers L(n). - J. M. Bergot, Oct 22 2012
a(n) = ((2*sqrt(5) - 1)*(((1 + sqrt(5))/2)^(n+1)) + (2*sqrt(5) + 1)*(((1 - sqrt(5))/2)^(n+1)))/(sqrt(5)). - Bogart B. Strauss, Jul 19 2013
a(n) = Lucas(n-1) + Fibonacci(n+3) = Lucas(n+2) - Fibonacci(n-3). - Greg Dresden and Griffin Donaldson, Mar 03 2022
Comments