cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022095 Fibonacci sequence beginning 1, 5.

Original entry on oeis.org

1, 5, 6, 11, 17, 28, 45, 73, 118, 191, 309, 500, 809, 1309, 2118, 3427, 5545, 8972, 14517, 23489, 38006, 61495, 99501, 160996, 260497, 421493, 681990, 1103483, 1785473, 2888956, 4674429, 7563385, 12237814, 19801199, 32039013, 51840212, 83879225, 135719437
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(5; n-1-k, k), n >= 1, with a(-1)=4. These are the sums of the SW-NE diagonals in P(5; n, k), the (5,1) Pascal triangle A093562. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. Also sums of the SW-NE diagonals in the (1,4)-Pascal triangle A095666.
Row sums of triangle A131776 starting (1, 5, 6, 11, 17, 28, ...). - Gary W. Adamson, Jul 14 2007
In general, for a Fibonacci sequence beginning with 1,b we have:
a(n) = (2^(-1-n)*((1 - sqrt(5))^n*(1 + sqrt(5) - 2b) + (1 + sqrt(5))^n*(-1 + sqrt(5) + 2b)))/sqrt(5). - Herbert Kociemba, Dec 18 2011
Subsequence of primes: 5, 11, 17, 73, 191, 809, 421493, 1103483, ... . - R. J. Mathar, Aug 09 2012
Pisano periods: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 9, 60, ... (differs from A001175). - R. J. Mathar, Aug 10 2012

Crossrefs

Row n=4 of A109754 (shifted).

Programs

  • GAP
    List([0..40],n->4*Fibonacci(n)+Fibonacci(n+1)); # Muniru A Asiru, Mar 04 2018
    
  • Magma
    a0:=1; a1:=5; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
    
  • Maple
    with(combinat): a:= n-> 4*fibonacci(n)+fibonacci(n+1): seq(a(n), n=0..32); # Zerinvary Lajos, Oct 05 2007
  • Mathematica
    f[n_] := (LucasL[n - 2] + 8*LucasL[n - 1] + 4*LucasL[n] + 2*LucasL[n + 1])/5; Array[f, 38, 0] (* or *)
    LinearRecurrence[{1, 1}, {1, 5}, 38] (* Robert G. Wilson v, Oct 22 2012 *)
  • PARI
    a(n)=fibonacci(n-1)+5*fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
    
  • SageMath
    A022095=BinaryRecurrenceSequence(1,1,1,5)
    [A022095(n) for n in range(41)] # G. C. Greubel, Jun 02 2025

Formula

a(n) = a(n-1) + a(n-2), n >= 2, a(0)=1, a(1)=5.
G.f.: (1+4*x)/(1-x-x^2).
a(n) = 4*Fibonacci(n) + Fibonacci(n+1), n >= 1. - Zerinvary Lajos, Oct 05 2007, corrected by R. J. Mathar, Apr 07 2011
a(n-1) = ((1 + sqrt(5))^n - (1 - sqrt(5))^n)/(2^n*sqrt(5)) + 2*((1 + sqrt(5))^(n-1) - (1 - sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 4*Fibonacci(n+2) - 3*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = (L(n-2) + 8*L(n-1) + 4*L(n) + 2*L(n+1))/5 for the Lucas numbers L(n). - J. M. Bergot, Oct 22 2012
a(n) = ((2*sqrt(5) - 1)*(((1 + sqrt(5))/2)^(n+1)) + (2*sqrt(5) + 1)*(((1 - sqrt(5))/2)^(n+1)))/(sqrt(5)). - Bogart B. Strauss, Jul 19 2013
a(n) = Lucas(n-1) + Fibonacci(n+3) = Lucas(n+2) - Fibonacci(n-3). - Greg Dresden and Griffin Donaldson, Mar 03 2022