cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022116 Fibonacci sequence beginning 2, 13.

Original entry on oeis.org

2, 13, 15, 28, 43, 71, 114, 185, 299, 484, 783, 1267, 2050, 3317, 5367, 8684, 14051, 22735, 36786, 59521, 96307, 155828, 252135, 407963, 660098, 1068061, 1728159, 2796220, 4524379, 7320599, 11844978, 19165577, 31010555, 50176132, 81186687, 131362819
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Crossrefs

Programs

  • Magma
    a:=[2,13]; [n le 2 select a[n] else Self(n-1)+Self(n-2): n in [1..36]]; // Marius A. Burtea, Feb 11 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 36); Coefficients(R!( (2+11*x)/(1-x-x^2))); // Marius A. Burtea, Feb 11 2020
    
  • Maple
    seq( 2*fibonacci(n+2) +9*fibonacci(n), n=0..40); # G. C. Greubel, Feb 12 2020
  • Mathematica
    CoefficientList[Series[(2+11x)/(1-x-x^2), {x, 0, 40}], x] (* Wesley Ivan Hurt, Jun 15 2014 *)
    LinearRecurrence[{1,1},{2,13},50] (* Harvey P. Dale, Jun 20 2017 *)
  • PARI
    vector(41, n, my(m=n-1, f=fibonacci); 2*f(m+2) + 9*f(m) ) \\ G. C. Greubel, Feb 12 2020
    
  • Sage
    [2*fibonacci(n+2) + 9*fibonacci(n) for n in (0..40)] # G. C. Greubel, Feb 12 2020

Formula

G.f.: (2 + 11*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = 4*Fibonacci(n+2) + 3*Fibonacci(n+3) - 4*Lucas(n). - Lechoslaw Ratajczak, Feb 10 2020
E.g.f.: (2/5)*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 12*sqrt(5)*sinh(sqrt(5)*x/2)). - Stefano Spezia, Feb 11 2020
a(n) = 2*Fibonacci(n+2) + 9*Fibonacci(n). - G. C. Greubel, Feb 12 2020