A022116 Fibonacci sequence beginning 2, 13.
2, 13, 15, 28, 43, 71, 114, 185, 299, 484, 783, 1267, 2050, 3317, 5367, 8684, 14051, 22735, 36786, 59521, 96307, 155828, 252135, 407963, 660098, 1068061, 1728159, 2796220, 4524379, 7320599, 11844978, 19165577, 31010555, 50176132, 81186687, 131362819
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
a:=[2,13]; [n le 2 select a[n] else Self(n-1)+Self(n-2): n in [1..36]]; // Marius A. Burtea, Feb 11 2020
-
Magma
R
:=PowerSeriesRing(Integers(), 36); Coefficients(R!( (2+11*x)/(1-x-x^2))); // Marius A. Burtea, Feb 11 2020 -
Maple
seq( 2*fibonacci(n+2) +9*fibonacci(n), n=0..40); # G. C. Greubel, Feb 12 2020
-
Mathematica
CoefficientList[Series[(2+11x)/(1-x-x^2), {x, 0, 40}], x] (* Wesley Ivan Hurt, Jun 15 2014 *) LinearRecurrence[{1,1},{2,13},50] (* Harvey P. Dale, Jun 20 2017 *)
-
PARI
vector(41, n, my(m=n-1, f=fibonacci); 2*f(m+2) + 9*f(m) ) \\ G. C. Greubel, Feb 12 2020
-
Sage
[2*fibonacci(n+2) + 9*fibonacci(n) for n in (0..40)] # G. C. Greubel, Feb 12 2020
Formula
G.f.: (2 + 11*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = 4*Fibonacci(n+2) + 3*Fibonacci(n+3) - 4*Lucas(n). - Lechoslaw Ratajczak, Feb 10 2020
E.g.f.: (2/5)*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 12*sqrt(5)*sinh(sqrt(5)*x/2)). - Stefano Spezia, Feb 11 2020
a(n) = 2*Fibonacci(n+2) + 9*Fibonacci(n). - G. C. Greubel, Feb 12 2020