A022166 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 7, 7, 1; 1, 15, 35, 15, 1; 1, 31, 155, 155, 31, 1; 1, 63, 651, 1395, 651, 63, 1; 1, 127, 2667, 11811, 11811, 2667, 127, 1;
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Octavio A. Agustín-Aquino, Archimedes' quadrature of the parabola and minimal covers, arXiv:1602.05279 [math.CO], 2016.
- J. A. de Azcarraga and J. A. Macfarlane, Group Theoretical Foundations of Fractional Supersymmetry arXiv:hep-th/9506177, 1995.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- D. Slepian, A class of binary signaling alphabets, Bell System Tech. J. 35 (1956), 203-234.
- D. Slepian, Some further theory of group codes, Bell System Tech. J. 39 1960 1219-1252.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Eric W. Weisstein, q-Binomial Coefficient.
- Wikipedia, q-binomial
- Index entries for sequences related to binary linear codes
- Index entries for sequences related to Gaussian binomial coefficients
Crossrefs
Cf. A006516, A218449, A135950 (matrix inverse), A000225 (k=1), A006095 (k=2), A006096 (k=3), A139382.
Cf. this sequence (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Programs
-
Magma
q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
-
Maple
A005329 := proc(n) mul( 2^i-1,i=1..n) ; end proc: A022166 := proc(n,m) A005329(n)/A005329(n-m)/A005329(m) ; end proc: # R. J. Mathar, Nov 14 2011
-
Mathematica
Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *) (* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0; T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
-
PARI
T(n,k)=polcoeff(x^k/prod(j=0,k,1-2^j*x+x*O(x^n)),n) \\ Paul D. Hanna, Oct 28 2006
-
PARI
qp = matpascal(9,2); for(n=1,#qp,for(k=1,n,print1(qp[n,k],", "))) \\ Gerald McGarvey, Dec 05 2009
-
PARI
{q=2; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || n
G. C. Greubel, May 27 2018 -
Sage
def T(n,k): return gaussian_binomial(n,k).subs(q=2) # Ralf Stephan, Mar 02 2014
Formula
G.f.: A(x,y) = Sum_{k>=0} y^k/Product_{j=0..k} (1 - 2^j*x). - Paul D. Hanna, Oct 28 2006
For k = 1,2,3,... the expansion of exp( Sum_{n >= 1} (2^(k*n) - 1)/(2^n - 1)*x^n/n ) gives the o.g.f. for the k-th diagonal of the triangle (k = 1 corresponds to the main diagonal). - Peter Bala, Apr 07 2015
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(m+n,k) = Sum_{i=0..k} q^((k-i)*(m-i)) * T(m,i) * T(n,k-i), q=2 (see the Sved link, page 337). - Werner Schulte, Apr 09 2019
T(n,k) = Sum_{j=0..k} qStirling2(n-j,n-k)*C(n,j) where qStirling2(n,k) is A139382. - Vladimir Kruchinin, Mar 04 2020
Comments