A022267 a(n) = n*(9*n + 1)/2.
0, 5, 19, 42, 74, 115, 165, 224, 292, 369, 455, 550, 654, 767, 889, 1020, 1160, 1309, 1467, 1634, 1810, 1995, 2189, 2392, 2604, 2825, 3055, 3294, 3542, 3799, 4065, 4340, 4624, 4917, 5219, 5530, 5850, 6179
Offset: 0
Links
- Lei Zhou, Table of n, a(n) for n = 0..10000
- Milan Janjic, Two Enumerative Functions
- Leo Tavares, Illustration: X Triangles
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Maple
seq(binomial(9*n+1,2)/9, n=0..37); # Zerinvary Lajos, Jan 21 2007
-
Mathematica
Table[ n (9 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 19}, 40] (* Harvey P. Dale, Jul 01 2013 *)
-
PARI
vector(100,n,(n-1)*(9*n-8)/2) \\ Derek Orr, Feb 06 2015
Formula
a(n) = A110449(n, 4) for n>3.
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 4*x)/(1 - x)^3.
a(n) = 9*n + a(n-1) - 4 with n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = A218470(9*n+4). - Philippe Deléham, Mar 27 2013
E.g.f.: (1/2)*(9*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
Comments