A022915 Multinomial coefficients (0, 1, ..., n)! = C(n+1,2)!/(0!*1!*2!*...*n!).
1, 1, 3, 60, 12600, 37837800, 2053230379200, 2431106898187968000, 73566121315513295589120000, 65191584694745586153436251091200000, 1906765806522767212441719098019963758016000000, 2048024348726152339387799085049745725891853852479488000000
Offset: 0
Examples
From _Gus Wiseman_, Aug 12 2020: (Start) The a(3) = 60 permutations of the prime indices of A006939(3) = 360: (111223) (121123) (131122) (212113) (231211) (111232) (121132) (131212) (212131) (232111) (111322) (121213) (131221) (212311) (311122) (112123) (121231) (132112) (213112) (311212) (112132) (121312) (132121) (213121) (311221) (112213) (121321) (132211) (213211) (312112) (112231) (122113) (211123) (221113) (312121) (112312) (122131) (211132) (221131) (312211) (112321) (122311) (211213) (221311) (321112) (113122) (123112) (211231) (223111) (321121) (113212) (123121) (211312) (231112) (321211) (113221) (123211) (211321) (231121) (322111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..35
- Eric Weisstein's World of Mathematics, Adjacency Matrix
- Eric Weisstein's World of Mathematics, Multinomial Coefficient
Crossrefs
Programs
-
Maple
with(combinat): a:= n-> multinomial(binomial(n+1, 2), $0..n): seq(a(n), n=0..12); # Alois P. Heinz, May 18 2013
-
Mathematica
Table[Apply[Multinomial ,Range[n]], {n, 0, 20}] (* Geoffrey Critzer, Dec 09 2012 *) Table[Multinomial @@ Range[n], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *) Table[Binomial[n + 1, 2]!/BarnesG[n + 2], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *) Table[Length[Permutations[Join@@Table[i,{i,n},{i}]]],{n,0,4}] (* Gus Wiseman, Aug 12 2020 *)
-
PARI
a(n) = binomial(n+1,2)!/prod(k=1, n, k^(n+1-k)); \\ Michel Marcus, May 02 2019
Formula
a(n) = (n*(n+1)/2)!/(0!*1!*2!*...*n!).
a(n) = a(n-1) * A014068(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001.
a(n) = A208437(n*(n+1)/2,n). - Alois P. Heinz, Apr 08 2016
a(n) ~ A * exp(n^2/4 + n + 1/6) * n^(n^2/2 + 7/12) / (2^((n+1)^2/2) * Pi^(n/2)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 02 2019
a(n) = A327803(n*(n+1)/2,n). - Alois P. Heinz, Sep 25 2019
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2001
More terms from Michel ten Voorde, Apr 12 2001
Better definition from L. Edson Jeffery, May 18 2013
Comments