A023086
Numbers k such that k and 2*k are anagrams.
Original entry on oeis.org
0, 125874, 128574, 142587, 142857, 258714, 258741, 285714, 285741, 412587, 412857, 425871, 428571, 1025874, 1028574, 1042587, 1042857, 1052874, 1054287, 1072854, 1074285, 1078524, 1078542, 1085274, 1085427, 1087254, 1087425, 1087524, 1087542
Offset: 1
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968, pp. 31-35.
-
Res:= 0:
for d from 1 to 7 do
for n from 10^(d-1)+8 to 5*10^(d-1)-1 by 9 do
if sort(convert(n,base,10)) = sort(convert(2*n,base,10)) then
Res:= Res, n
fi
od od:
Res; # Robert Israel, Mar 20 2017
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@ {0, Table[ Select[ Range[ 10^e+8, 5*10^e-1, 9], si[#] == si[2 #] &], {e, 6}]} (* Giovanni Resta, Mar 20 2017 *)
-
def ok(n): return sorted(str(n)) == sorted(str(2*n))
print(list(filter(ok, range(1087543)))) # Michael S. Branicky, May 21 2021
-
# use with ok above for larger terms
def auptod(maxd):
return [0] + list(filter(ok, (n for d in range(2, maxd+1) for n in range(10**(d-1)-1, 5*10**(d-1), 9))))
print(auptod(7)) # Michael S. Branicky, May 22 2021
A023087
Numbers k such that k and 3*k are anagrams.
Original entry on oeis.org
0, 1035, 2475, 10035, 10350, 12375, 14247, 14724, 23751, 24147, 24714, 24750, 24876, 24975, 27585, 28575, 100035, 100350, 102375, 103428, 103500, 107235, 113724, 114237, 123507, 123714, 123750, 123876, 123975, 124137, 128034, 134505, 135045
Offset: 1
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968, pp. 25-31.
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@ {0, Table[ Select[ Range[10^d + 8, 4 10^d - 1, 9], si[#] == si[3 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017, corrected by Philippe Guglielmetti, Jul 16 2018 *)
A023093
Numbers k such that k and 9*k are anagrams.
Original entry on oeis.org
0, 1089, 10089, 10449, 10890, 10899, 10989, 100089, 100449, 100890, 100899, 100989, 102249, 104490, 104499, 106749, 107793, 107892, 108900, 108990, 108999, 109890, 109899, 109989, 1000089, 1000449, 1000890, 1000899, 1000989, 1002249, 1004490
Offset: 1
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@{0, Table[Select[Range[10^d + 8, 2 10^d - 1, 9], si[#] == si[9 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017 *)
A023089
Numbers k such that k and 5*k are anagrams.
Original entry on oeis.org
0, 142857, 148257, 174285, 174825, 1025748, 1028574, 1057428, 1057482, 1082574, 1085742, 1402857, 1408257, 1420857, 1425708, 1425789, 1425897, 1428057, 1428570, 1428579, 1428597, 1429785, 1429857, 1457028, 1457082, 1457829, 1458297, 1480257
Offset: 1
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968, pp. 35-37.
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@{0, Table[Select[Range[10^d + 8, 2 10^d - 1, 9], si[#] == si[5 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017 *)
A023090
Numbers k such that k and 6*k are anagrams.
Original entry on oeis.org
0, 1386, 13860, 13986, 14085, 14859, 15192, 106848, 120267, 126702, 126873, 137286, 138402, 138600, 138627, 139860, 139986, 140085, 140184, 140850, 140985, 141858, 142857, 148509, 148590, 148599, 149085, 149859, 150192, 151893, 151920, 151992
Offset: 1
-
Select[Range[0,160000],Sort[IntegerDigits[#]]==Sort[IntegerDigits[ 6#]]&] (* Harvey P. Dale, Mar 18 2015 *)
A023091
Numbers k such that k and 7*k are anagrams.
Original entry on oeis.org
0, 1359, 11688, 11883, 12903, 13029, 13359, 13449, 13590, 13599, 13659, 107583, 108726, 111873, 116688, 116880, 116988, 118731, 118830, 118833, 119883, 123876, 124875, 126888, 127389, 129003, 129030, 129033, 129903, 130029, 130149, 130290
Offset: 1
-
si[n_] := Sort@ IntegerDigits@ n; Flatten@{0, Table[Select[Range[10^d + 2, 2 10^d - 1, 3], si[#] == si[7 #] &], {d, 0, 6}]} (* Giovanni Resta, Mar 20 2017 *)
Select[3*Range[0,50000],Sort[IntegerDigits[7 #]]==Sort[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 06 2022 *)
A023092
Numbers k such that k and 8*k are anagrams.
Original entry on oeis.org
0, 113967, 116397, 1014138, 1045638, 1064538, 1139148, 1139670, 1139967, 1141398, 1156392, 1163970, 1163997, 10014138, 10045638, 10064538, 10141380, 10145628, 10148913, 10149138, 10182564, 10265382, 10268145, 10288836, 10289637, 10296387
Offset: 1
-
fQ[n_] := Sort@ IntegerDigits[ n] == Sort@ IntegerDigits[ 8n]; Select[ Range[0, 10328885], fQ] (* Robert G. Wilson v, Oct 25 2012 *)
Select[Range[0,103*10^5,9],Sort[IntegerDigits[#]]==Sort[IntegerDigits[8#]]&] (* Harvey P. Dale, Jul 18 2025 *)
Original entry on oeis.org
1025874, 1028574, 1042587, 1042857, 1052874, 1054287, 1072854, 1074285, 1078524, 1078542, 1085274, 1085427, 1087254, 1087425, 1087524, 1087542, 1207854, 1208754, 1240785, 1240875, 1245789, 1245879, 1247589, 1247859, 1248579, 1248759, 1250874, 1254087, 1257489
Offset: 1
a(1)=1025874 because 1025874 and 2*1025874=2051748 both use the same set of digits {0,1,2,4,5,7,8};
a(21)=1245789 because 1245789 and 2*1245789=2491578 both use the same set of digits {1,2,4,5,7,8,9}.
Cf.
A023086 (k and 2*k are anagrams),
A023088 (k and 4*k are anagrams).
-
anaQ[n_]:=Max[DigitCount[n]]==1&&Union[IntegerDigits[n]] == Union[ IntegerDigits[2n]]; Select[Range[1000000,1250000],anaQ] (* Harvey P. Dale, Oct 30 2011 *)
A133220
a(n) is the smallest positive number k such that k and n*k are anagrams.
Original entry on oeis.org
1, 125874, 1035, 1782, 142857, 1386, 1359, 113967, 1089
Offset: 1
3*1035 = 3105 and this is the smallest such number.
A373407
Smallest positive integer k such that no more than n numbers (formed by multiplying k by a digit) are anagrams of k, or -1 if no such number exists.
Original entry on oeis.org
1, 1035, 123876, 1402857, 1037520684, 142857
Offset: 1
a(2) = 1035, because 1035 * 1 = 1035 and 1035 * 3 = 3105 are anagrams of 1035, and no other number 1035 * i with digit i is an anagram of 1035, and no lesser number verifies this property.
Table n, k, set of multipliers.
1 1 [1]
2 1035 [1, 3]
3 123876 [1, 3, 7]
4 1402857 [1, 2, 3, 5]
5 1037520684 [1, 2, 4, 5, 8]
6 142857 [1, 2, 3, 4, 5, 6]
-
isok(k, n) = my(d=vecsort(digits(k))); sum(i=1, 9, vecsort(digits(k*i)) == d) == n; \\ Michel Marcus, Jun 04 2024
Showing 1-10 of 10 results.
Comments