A023195 Prime numbers that are the sum of the divisors of some n.
3, 7, 13, 31, 127, 307, 1093, 1723, 2801, 3541, 5113, 8011, 8191, 10303, 17293, 19531, 28057, 30103, 30941, 86143, 88741, 131071, 147073, 292561, 459007, 492103, 524287, 552793, 579883, 598303, 684757, 704761, 732541, 735307, 797161, 830833, 1191373
Offset: 1
Keywords
Examples
307 = 1 + 17 + 17^2; 307 and 17 are primes.
Links
- David W. Wilson, Table of n, a(n) for n = 1..10000
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
Crossrefs
Programs
-
Mathematica
t={3}; lim=10^9; n=1; While[p=Prime[n]; k=2; s=1+p+p^2; s
Harvey P. Dale, Jun 18 2022 *) -
PARI
upto(lim)=my(v=List([3]),t); forprime(p=2,solve(x=1,lim^(1/4), x^4+x^3+x^2+x+1-lim), forprime(e=5,1+log(lim)\log(p), if(isprime(t=sigma(p^(e-1))) && t<=lim, listput(v,t)))); forprime(p=2, solve(x=1,lim^(1/2),x^2+x+1-lim), if(isprime(t=p^2+p+1), listput(v,t))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Dec 20 2011
-
Python
from sympy import isprime, divisor_sigma A023195_list = sorted(set([3]+[n for n in (divisor_sigma(d**2) for d in range(1,10**4)) if isprime(n)])) # Chai Wah Wu, Jul 23 2016
Comments