A023212 Primes p such that 4*p+1 is also prime.
3, 7, 13, 37, 43, 67, 73, 79, 97, 127, 139, 163, 193, 199, 277, 307, 373, 409, 433, 487, 499, 577, 619, 673, 709, 727, 739, 853, 883, 919, 997, 1033, 1039, 1063, 1087, 1093, 1123, 1129, 1297, 1327, 1423, 1429, 1453, 1543, 1549, 1567, 1579, 1597, 1663, 1753
Offset: 1
Keywords
References
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 102, nr. 5.
- P. L. Chebyshev, Theory of congruences, Elements of number theory, Chelsea, 1972, p. 306.
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
- Grigory Ryabov, On schurity of the dihedral group D_(2p), arXiv:2308.14209 [math.GR], 2023.
- Rosemary Sullivan and Neil Watling, Independent divisibility pairs on the set of integers from 1 to n, INTEGERS, Vol. 13 (2013), Article A65.
- Samuel S. Wagstaff, Jr., Sum of Reciprocals of Germain Primes, Journal of Integer Sequences, Vol. 24, No. 2 (2021), Article 21.9.5.
Programs
-
Magma
[n: n in [0..1000] | IsPrime(n) and IsPrime(4*n+1)]; // Vincenzo Librandi, Nov 20 2010
-
Maple
isA023212 := proc(n) isprime(n) and isprime(4*n+1) ; end proc: for n from 1 to 1800 do if isA023212(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, May 26 2013
-
Mathematica
Select[Range[2000], PrimeQ[#] && PrimeQ[4# + 1] &] (* Alonso del Arte, Aug 15 2011 *) Join[{3}, Select[Range[7, 2000, 6], PrimeQ[#] && PrimeQ[4# + 1] &]] (* Zak Seidov, Jan 21 2012 *) Select[Prime[Range[300]],PrimeQ[4#+1]&] (* Harvey P. Dale, Oct 17 2021 *)
-
PARI
forprime(p=2,1800,if(Mod(p,4*p+1)^p==1, print1(p", \n"))) \\ Alexander R. Povolotsky, May 23 2013
Formula
Sum_{n>=1} 1/a(n) is in the interval (0.892962433, 1.1616905) (Wagstaff, 2021). - Amiram Eldar, Nov 04 2021
Extensions
Name edited by Michel Marcus, Nov 27 2020
Comments