A023548 Convolution of natural numbers >= 2 and Fibonacci numbers.
2, 5, 11, 21, 38, 66, 112, 187, 309, 507, 828, 1348, 2190, 3553, 5759, 9329, 15106, 24454, 39580, 64055, 103657, 167735, 271416, 439176, 710618, 1149821, 1860467, 3010317, 4870814, 7881162, 12752008, 20633203, 33385245, 54018483, 87403764, 141422284
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- N.-N. Cao and F.-Z. Zhao, Some Properties of Hyperfibonacci and Hyperlucas Numbers, J. Int. Seq. 13 (2010) # 10.8.8
- Ligia L. Cristea, Ivica Martinjak, and Igor Urbiha, Hyperfibonacci Sequences and Polytopic Numbers, Journal of Integer Sequences, Volume 19, 2016, Issue 7, #16.7.6.
- A. B. Vinokur, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian); English translation in Cybernetics 21, Issue 6 (1986), 692-696.
- Alex Vinokur, Fibonacci connection between Huffman codes and Wythoff array, arXiv:cs/0410013 [cs.DM], 2004-2005.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
List([1..40], n-> Lucas(1,-1,n+3)[2] -n-4); # G. C. Greubel, Jul 08 2019
-
Magma
[4*(Fibonacci(n+1)-1)+3*Fibonacci(n)-n: n in [1..40]]; // Vincenzo Librandi, Sep 16 2017
-
Mathematica
Table[4(Fibonacci[n+1] -1) +3Fibonacci[n] -n, {n, 40}] (* Vincenzo Librandi, Sep 16 2017 *)
-
PARI
a(n) = 4*fibonacci(n+1) + 3*fibonacci(n) - n - 4; \\ Michel Marcus, Sep 08 2016
-
PARI
Vec(x*(2-x) / ((1-x-x^2)*(1-x)^2) + O(x^40)) \\ Colin Barker, Mar 11 2017
-
Sage
[lucas_number2(n+3,1,-1) -n-4 for n in (1..40)] # G. C. Greubel, Jul 08 2019
Formula
From Wolfdieter Lang: (Start)
Convolution of natural numbers n >= 1 with Lucas numbers (A000032).
a(n) = 4*(F(n+1) - 1) + 3*F(n) - n, F(n)=A000045 (Fibonacci).
G.f.: x*(2-x)/((1-x-x^2)*(1-x)^2). (End)
For n >= 1, a(n) = L(n+3) - (n+4), where L(n) are Lucas numbers. - Mario Catalani (mario.catalani(AT)unito.it), Jul 22 2004
a(n) = F(n+4) + F(n+2) - (n+4) for n >= 1. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 26 2004 [Offset corrected by Jianing Song, Apr 28 2025]
a(n) = (-4 + (2^(-n)*((1-sqrt(5))^n*(-5+2*sqrt(5)) + (1+sqrt(5))^n*(5+2*sqrt(5)))) / sqrt(5) - n). - Colin Barker, Mar 11 2017
a(n) = Sum_{i=1..n} C(n-i+2,i+1) + C(n-i+1,i). - Wesley Ivan Hurt, Sep 13 2017
E.g.f.: 2*exp(x/2)*(2*cosh((sqrt(5)*x)/2) + sqrt(5)*sinh((sqrt(5)*x)/2)) - exp(x)*(4 + x). - Stefano Spezia, May 21 2025
Comments