cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023548 Convolution of natural numbers >= 2 and Fibonacci numbers.

Original entry on oeis.org

2, 5, 11, 21, 38, 66, 112, 187, 309, 507, 828, 1348, 2190, 3553, 5759, 9329, 15106, 24454, 39580, 64055, 103657, 167735, 271416, 439176, 710618, 1149821, 1860467, 3010317, 4870814, 7881162, 12752008, 20633203, 33385245, 54018483, 87403764, 141422284
Offset: 1

Views

Author

Keywords

Comments

Minimal cost of maximum height Huffman tree of size n for strictly "worst case height" sequences. (A strictly "worst case height" sequence generates only maximum height Huffman trees; a non-strictly "worst case height" sequence can generate also non-maximum height Huffman trees.) - Alex Vinokur (alexvn(AT)barak-online.net), Oct 26 2004
Record-positions for A107910: A107910(a(n+2)) = A005578(n), A107910(m) < A005578(n) for m < a(n+2). - Reinhard Zumkeller, May 28 2005
From Jianing Song, Apr 28 2025: (Start)
For n >= 4, a(n-3) is the number of subsets of {1,2,...,n} with at least 2 elements that contain no consecutive elements modulo n. Note that:
- the number of subsets of {1,2,...,n} with k elements such that the difference of successive elements is at least 2 is binomial(n+1-k,k);
- the number of such subsets of {1,2,...,n} with k elements that contain both 1 and n is equal to the number of such subsets of {3,...,n-2} with k-2 elements, which is binomial(n-3-(k-2),k-2),
hence a(n) = Sum_{k=2..floor((n+1)/2)} binomial(n+1-k,k) - Sum_{k=0..floor((n-3)/2)} binomial(n-3-k,k) = (F(n+2) - binomial(n+1,0) - binomial(n,1)) - F(n-2) = F(n+1) + F(n-1) - (n+1).
If subsets of {1,2,...,n} are only required to contain no consecutive elements, then the result is A001924(n-2). (End)

Crossrefs

Antidiagonal sums of A292030.

Programs

  • GAP
    List([1..40], n-> Lucas(1,-1,n+3)[2] -n-4); # G. C. Greubel, Jul 08 2019
  • Magma
    [4*(Fibonacci(n+1)-1)+3*Fibonacci(n)-n: n in [1..40]]; // Vincenzo Librandi, Sep 16 2017
    
  • Mathematica
    Table[4(Fibonacci[n+1] -1) +3Fibonacci[n] -n, {n, 40}] (* Vincenzo Librandi, Sep 16 2017 *)
  • PARI
    a(n) = 4*fibonacci(n+1) + 3*fibonacci(n) - n - 4; \\ Michel Marcus, Sep 08 2016
    
  • PARI
    Vec(x*(2-x) / ((1-x-x^2)*(1-x)^2) + O(x^40)) \\ Colin Barker, Mar 11 2017
    
  • Sage
    [lucas_number2(n+3,1,-1) -n-4 for n in (1..40)] # G. C. Greubel, Jul 08 2019
    

Formula

From Wolfdieter Lang: (Start)
Convolution of natural numbers n >= 1 with Lucas numbers (A000032).
a(n) = 4*(F(n+1) - 1) + 3*F(n) - n, F(n)=A000045 (Fibonacci).
G.f.: x*(2-x)/((1-x-x^2)*(1-x)^2). (End)
For n >= 1, a(n) = L(n+3) - (n+4), where L(n) are Lucas numbers. - Mario Catalani (mario.catalani(AT)unito.it), Jul 22 2004
a(n) = F(n+4) + F(n+2) - (n+4) for n >= 1. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 26 2004 [Offset corrected by Jianing Song, Apr 28 2025]
a(n) = (-4 + (2^(-n)*((1-sqrt(5))^n*(-5+2*sqrt(5)) + (1+sqrt(5))^n*(5+2*sqrt(5)))) / sqrt(5) - n). - Colin Barker, Mar 11 2017
a(n) = Sum_{i=1..n} C(n-i+2,i+1) + C(n-i+1,i). - Wesley Ivan Hurt, Sep 13 2017
E.g.f.: 2*exp(x/2)*(2*cosh((sqrt(5)*x)/2) + sqrt(5)*sinh((sqrt(5)*x)/2)) - exp(x)*(4 + x). - Stefano Spezia, May 21 2025