A023607 a(n) = n * Fibonacci(n+1).
0, 1, 4, 9, 20, 40, 78, 147, 272, 495, 890, 1584, 2796, 4901, 8540, 14805, 25552, 43928, 75258, 128535, 218920, 371931, 630454, 1066464, 1800600, 3034825, 5106868, 8580897, 14398412, 24129160, 40388070, 67527579, 112786496, 188195271
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- M. Griffiths, A Restricted Random Walk defined via a Fibonacci Process, Journal of Integer Sequences, Vol. 14 (2011), #11.5.4.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8, section 3.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Haskell
a023607 n = a023607_list !! n a023607_list = zipWith (*) [0..] $ tail a000045_list -- Reinhard Zumkeller, Oct 08 2012
-
Maple
A023607 := proc(n) n*combinat[fibonacci](n+1) ; end proc: seq(A023607(n),n=0..10) ; # R. J. Mathar, Jul 15 2017
-
Mathematica
Times@@@Thread[{Range[0, 50], Fibonacci[Range[51]]}] (* Harvey P. Dale, Mar 08 2011 *) Table[n*Fibonacci[n + 1], {n, 0, 50}]
-
PARI
a(n)=n*fibonacci(n+1) \\ Charles R Greathouse IV, Sep 24 2015
Formula
O.g.f.: x(2x+1)/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = n*Sum_{k=0..n} binomial(k,n-k). - Paul Barry, Sep 25 2004
Extensions
Simpler description from Samuel Lachterman (slachterman(AT)fuse.net), Sep 19 2003
Name improved by T. D. Noe, Mar 08 2011
Comments