A024023 a(n) = 3^n - 1.
0, 2, 8, 26, 80, 242, 728, 2186, 6560, 19682, 59048, 177146, 531440, 1594322, 4782968, 14348906, 43046720, 129140162, 387420488, 1162261466, 3486784400, 10460353202, 31381059608, 94143178826, 282429536480, 847288609442, 2541865828328, 7625597484986, 22876792454960
Offset: 0
Examples
From _Zerinvary Lajos_, Jan 14 2007: (Start) Ternary......decimal: 0...............0 2...............2 22..............8 222............26 2222...........80 22222.........242 222222........728 2222222......2186 22222222.....6560 222222222...19682 2222222222..59048 etc...........etc. (End) Sequence combinatorics: n=3: With length m=1: [1],[2],[3] each with 2 signs, with m=2: [1,1], [1,2], [2,1], each 2^2 = 4 times from choosing signs; m=3: [1,1,1] coming in 2^3 signed versions: 3*2 + 3*4 + 1*8 = 26 = a(3). The order is important, hence the M_0 multinomials A048996 enter as factors. A027902 gives the 384 divisors of a(24). - _Reinhard Zumkeller_, Mar 11 2010
References
- Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Omran Ahmadi and Robert Granger, An efficient deterministic test for Kloosterman sum zeros, Mathematics of Computation, Vol. 83, No. 285 (2014), pp. 347-363; arXiv preprint, arXiv:1104.3882 [math.NT], 2011-2012. See 1st column of Table 2, p. 9.
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Michael Baake, Franz Gähler, and Uwe Grimm, Examples of Substitution Systems and Their Factors, Journal of Integer Sequences, Vol. 16 (2013), #13.2.14.
- R. Samuel Buss, Herbrand's Theorem, University of California, Logic and Computational Complexity pp. 195-209, Lecture Notes in Computer Science, vol 960. Springer.
- Jan Draisma, Tyrrell B. McAllister and Benjamin Nill, Lattice width directions and Minkowski's 3^d-theorem, SIAM J. Discrete Math., Vol. 26, No. 3 (2012), pp. 1104-1107; arXiv preprint, arXiv:0901.1375 [math.CO], Jan 10 2009.
- Alessandro Farinelli, Herbrand Universe and Herbrand Base.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Krzysztof A. Meissner, Black hole entropy in Loop Quantum Gravity, Classical and Quantum Gravity, Vol. 21, No. 22 (2004), pp. 5245--5251; arXiv preprint, arXiv:gr-qc/0407052, 2004.
- Amir Sapir, The Tower of Hanoi with Forbidden Moves, The Computer J. 47 (1) (2004) 20, case three-in-a row, sequence b(n).
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Wikipedia, Herbrand Structure.
- Damiano Zanardini, Computational Logic, Slides, UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid, 2009-2010.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Haskell
a024023 = subtract 1 . a000244 -- Reinhard Zumkeller, Jun 30 2013
-
Magma
[3^n-1: n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
-
Mathematica
3^Range[0,30]-1 (* Paolo Xausa, Jul 15 2023 *)
-
PARI
a(n)=3^n-1 \\ Charles R Greathouse IV, Sep 24 2015
-
PARI
vector(50, n, sum(k=0, n, 2^k*binomial(n-1, k))-1) \\ Altug Alkan, Oct 04 2015
-
PARI
my(x='x+O('x^100)); concat([0], Vec(2*x/(-1+x)/(-1+3*x))) \\ Altug Alkan, Oct 16 2015
Formula
a(n) = A000244(n) - 1.
a(n) = 2*A003462(n). - R. J. Mathar, May 01 2006
A128760(a(n)) > 0. - Reinhard Zumkeller, Mar 25 2007
G.f.: 2*x/((-1+x)*(-1+3*x)) = 1/(-1+x) - 1/(-1+3*x). - R. J. Mathar, Nov 19 2007
a(n) = Sum_{k=1..n} Sum_{m=1..k} binomial(k-1,m-1)*2^m, n >= 1. a(0)=0. From the sequence combinatorics mentioned above. Twice partial sums of powers of 3.
E.g.f.: e^(3*x) - e^x. - Mohammad K. Azarian, Jan 14 2009
a(n) = 3*a(n-1) + 2 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
E.g.f.: -E(0) where E(k) = 1 - 3^k/(1 - x/(x - 3^k*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
Sum_{n>=1} 1/a(n) = A214369. - Amiram Eldar, Nov 11 2020
a(n) = Sum_{k=1..n} 2^k*binomial(n,k). - Ridouane Oudra, Jun 15 2025
From Peter Bala, Jul 01 2025: (Start)
Modulo differences in offsets, exp( Sum_{n >= 1} a(k*n)/a(n)*x^n/n ) is the o.g.f. of A003462 (k = 2), A006100 (k = 3), A006101 (k = 4), A006102 (k = 5), A022196 (k = 6), A022197 (k = 7), A022198 (k = 8), A022199 (k = 9), A022200 (k = 10), A022201 (k = 11), A022202 (k = 12) and A022203 (k = 13).
The following are all examples of telescoping series:
Sum_{n >= 1} 3^n/(a(n)*a(n+1)) = 1/2^2; Sum_{n >= 1} 3^n/(a(n)*a(n+1)*a(n+2)) = 1/(2*8^2).
In general, for k >= 1, Sum_{n >= 1} 3^n/(a(n)*a(n+1)*...*a(n+k)) = 1/(a(1)*a(2)*...*a(k)*a(k)).
Sum_{n >= 1} 3^n/(a(n)*a(n+2)) = 5/64; Sum_{n >= 1} (-3)^n/(a(n)*a(n+2)) = -3/64.
Sum_{n >= 1} 3^n/(a(n)*a(n+4)) = 703/83200; Sum_{n >= 1} (-3)^n/(a(n)*a(n+4)) = - 417/83200. (End)
Comments