cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024598 a(n) = s(1)*s(n) + s(2)*s(n-1) + ... + s(k)*s(n+1-k), where k = floor((n+1)/2), s = (odd natural numbers).

Original entry on oeis.org

1, 3, 14, 22, 55, 73, 140, 172, 285, 335, 506, 578, 819, 917, 1240, 1368, 1785, 1947, 2470, 2670, 3311, 3553, 4324, 4612, 5525, 5863, 6930, 7322, 8555, 9005, 10416, 10928, 12529, 13107, 14910, 15558, 17575, 18297, 20540, 21340, 23821, 24703, 27434, 28402
Offset: 1

Views

Author

Keywords

Comments

Sum of the areas of all rectangles with odd side lengths r and s such that r + s = 2n. - Wesley Ivan Hurt, Apr 21 2020

Crossrefs

Cf. A143218.

Programs

  • Magma
    [(4*n^3 +3*n^2 +2*n -3*n^2*(-1)^n)/12: n in [1..50]]; // G. C. Greubel, Jul 12 2022
    
  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,3,14,22,55,73,140},50] (* Harvey P. Dale, Aug 30 2021 *)
  • PARI
    Vec(x*(3*x^4+2*x^3+8*x^2+2*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Jan 17 2015
    
  • PARI
    odd(n) = 2*n-1;
    a(n) = sum(j=1, (n+1)\2, odd(j)*odd(n+1-j)); \\ Michel Marcus, Jan 17 2015
    
  • SageMath
    [(4*n^3 +3*n^2 +2*n -3*n^2*(-1)^n)/12 for n in (1..50)] # G. C. Greubel, Jul 12 2022

Formula

a(n) = (4*n^3 + 3*n^2 + 2*n - 3*n^2*(-1)^n)/12. - Luce ETIENNE, Jan 17 2015
G.f.: x*(3*x^4 + 2*x^3 + 8*x^2 + 2*x + 1) / ((x-1)^4*(x+1)^3). - Colin Barker, Jan 17 2015
a(n) = Sum_{i=1..n} i * (2*n-i) * (i mod 2). - Wesley Ivan Hurt, Apr 21 2020
E.g.f.: (x/6)*( 2*(3 + 3*x + x^2)*cosh(x) + (3 + 9*x + 2*x^2)*sinh(x) ). - G. C. Greubel, Jul 12 2022