cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A350241 a(n) is the smallest number which can be represented as the sum of n distinct nonzero squares in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

1, 65, 101, 142, 175, 255, 316, 380, 501, 625, 794, 995, 1155, 1456, 1696, 2012, 2373, 2709, 3118, 3566, 4158, 4608, 5211, 5852, 6500, 7221, 8065, 8906, 9766, 11089, 11855, 12868, 14020, 15337, 16601, 17854, 19255, 20840, 22364, 23964, 25813, 27665, 29650, 31635
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2021

Keywords

Examples

			For n = 2: 65 = 1^2 + 8^2 = 4^2 + 7^2.
For n = 3: 101 = 1^2 + 6^2 + 8^2 = 2^2 + 4^2 + 9^2 = 4^2 + 6^2 + 7^2.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Dec 21 2021

A024803 Numbers that are the sum of 3 distinct nonzero squares, including repetitions.

Original entry on oeis.org

14, 21, 26, 29, 30, 35, 38, 41, 42, 45, 46, 49, 50, 53, 54, 56, 59, 61, 62, 62, 65, 66, 69, 69, 70, 74, 74, 75, 77, 77, 78, 81, 83, 84, 86, 86, 89, 89, 90, 90, 91, 93, 94, 94, 98, 98, 101, 101, 101, 104, 105, 105, 106, 107, 109, 110, 110, 110, 113, 114, 115, 116, 117
Offset: 1

Views

Author

Keywords

Comments

Numbers n = x^2 + y^2 + z^2, with 0
Records of 1,2,3 etc. repetitions are set by the numbers 14, 62, 101, 161, 206, 314, 341, 446, 689, 734, 854, 1106, 1154, 1286, 1454 etc.; see A025415. - R. J. Mathar, Mar 15 2007

Examples

			14 = 1^2 + 2^2 + 3^2.
62 = 1^2 + 5^2 + 6^2 = 2^2 + 3^2 + 7^2.
105 = 1^2 + 2^2 + 10^2 = 4^2 + 5^2 + 8^2.
122 = 3^2 + 7^2 + 8^2 = 4^2 + 5^2 + 9^2.
		

Crossrefs

Programs

  • Maple
    A024803 := proc(n) local a,x,y,z ; a := 0 ; for x from 1 to floor(sqrt(n)) do for y from x+1 to floor(sqrt(n-x^2)) do z := n-x^2-y^2 ; if issqr(z) then z := sqrt(z) ; if z>y and z>x then a := a+1 ; fi ; fi ; od ; od ; RETURN(a) ; end: for n from 1 to 200 do a := A024803(n) : for i from 1 to a do printf("%d ",n) ; od ; od : # R. J. Mathar, Mar 15 2007

Extensions

Zak Seidov pointed out that there were errors. These have now been corrected. - N. J. A. Sloane, Dec 05 2006
More terms from R. J. Mathar, Mar 15 2007

A374227 a(n) is the smallest number which can be represented as the sum of three distinct positive n-th powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

6, 62, 5104, 5978882
Offset: 1

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

A214512 Least number having n orderless representations as p^2 + q^2 + r^2, where p, q, and r are primes.

Original entry on oeis.org

12, 219, 363, 699, 1179, 2019, 2259, 3891, 4059, 6459, 5379, 10899, 13179, 10659, 12579, 21819, 20979, 26859, 34419, 38379, 41019, 61299, 39459, 41811, 82131, 50379, 77451, 71379, 141099, 85491, 103971, 74571, 180411, 108339, 179739, 161139, 126819, 225099
Offset: 1

Author

T. D. Noe, Jul 29 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 10^6; ps = Prime[Range[PrimePi[Sqrt[nn]]]]; t = Flatten[Table[ps[[i]]^2 + ps[[j]]^2 + ps[[k]]^2, {i, Length[ps]}, {j, i, Length[ps]}, {k, j, Length[ps]}]]; t = Select[t, # <= nn &]; t2 = Sort[Tally[t]]; u = Union[Transpose[t2][[2]]]; d = Complement[Range[u[[-1]]], u]; If[d == {}, nLim = u[[-1]], nLim = d[[1]]-1]; t3 = Table[Select[t2, #[[2]] == n &, 1][[1]], {n, nLim}]; Transpose[t3][[1]]

A374806 a(n) is the smallest number which can be represented as the sum of 3 distinct nonzero triangular numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

10, 19, 37, 52, 82, 109, 136, 241, 226, 217, 247, 364, 427, 457, 541, 532, 577, 637, 961, 721, 787, 1066, 1102, 1381, 1267, 1564, 1192, 1396, 1816, 1501, 1612, 1927, 1942, 2242, 1792, 2842, 2587, 2557, 2422, 2866, 2887, 3181, 3271, 3412, 4126
Offset: 1

Author

Ilya Gutkovskiy, Jul 20 2024

Keywords

Examples

			a(3) = 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
		

Crossrefs

A374273 a(n) is the smallest number which can be represented as the sum of three distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

37, 161, 498, 1666, 2546, 7434, 16609, 25952, 48786, 49861, 72347, 127335, 183289, 196469, 416913, 466546, 494369, 506649, 801010, 1401011, 2372586, 1414009, 2003027, 3274986, 2927260, 2721677, 5592756, 8016592, 6632759, 7057914, 8401837, 13248146, 11648679, 8650006
Offset: 3

Author

Ilya Gutkovskiy, Jul 02 2024

Keywords

Examples

			a(3) = 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
a(4) = 161 = 1^2 + 4^2 + 12^2 = 2^2 + 6^2 + 11^2 = 4^2 + 8^2 + 9^2 = 5^2 + 6^2 + 10^2.
		

Crossrefs

Extensions

a(21) and beyond from Michael S. Branicky, Jul 08 2024

A374693 a(n) is the smallest number which can be represented as the sum of 3 distinct nonzero fourth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

98, 6578, 811538, 5978882, 1289202642, 292965218, 779888018, 5745705602, 105760443698, 49511121842, 1872511131218, 281539574498, 17673688436978
Offset: 1

Author

Ilya Gutkovskiy, Jul 17 2024

Keywords

Comments

a(16) = 7865870969138. - Michael S. Branicky, Jul 23 2024

Examples

			a(2) = 6578 = 1^4 + 2^4 + 9^4 = 3^4 + 7^4 + 8^4.
a(3) = 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4.
		

Crossrefs

Extensions

a(9)-a(12) from Michael S. Branicky, Jul 22 2024
a(13) from Michael S. Branicky, Jul 23 2024

A374805 a(n) is the smallest positive integer whose square can be represented as the sum of 3 distinct nonzero squares in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

1, 7, 15, 23, 31, 21, 33, 39, 49, 45, 79, 57, 95, 103, 75, 69, 127, 87, 63, 151, 93, 167, 111, 123, 99, 187, 117, 105, 161, 241, 141, 135, 153, 247, 271, 283, 177, 183, 165, 275, 147, 171, 323, 219
Offset: 0

Author

Ilya Gutkovskiy, Jul 20 2024

Keywords

Examples

			a(3) = 23: 23^2 = 3^2 + 6^2 + 22^2 = 3^2 + 14^2 + 18^2 = 6^2 + 13^2 + 18^2.
		

Crossrefs

Extensions

a(35)-a(43) from Michael S. Branicky, Jul 21 2024

A096021 Greatest number, not divisible by 4, having exactly n partitions into three distinct positive squares.

Original entry on oeis.org

1507, 4323, 5947, 10707, 19723, 30067, 34483, 47107, 58843, 77683, 111763, 106723, 126043, 166147, 164803, 222643, 217627, 232243, 289963, 319243, 300787, 319867, 462883, 393187, 546067, 532123, 502483, 615883, 662803, 606643
Offset: 1

Author

T. D. Noe, Jun 15 2004

Keywords

Comments

These are conjectured values. The Mathematica program checks numbers up to 10^6.

Crossrefs

Cf. A025415 (least sum of 3 distinct nonzero squares in exactly n ways).

Programs

  • Mathematica
    lim=1000; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && n0&]], {k, 30}]
Showing 1-9 of 9 results.