14, 21, 26, 29, 30, 35, 38, 41, 42, 45, 46, 49, 50, 53, 54, 56, 59, 61, 62, 62, 65, 66, 69, 69, 70, 74, 74, 75, 77, 77, 78, 81, 83, 84, 86, 86, 89, 89, 90, 90, 91, 93, 94, 94, 98, 98, 101, 101, 101, 104, 105, 105, 106, 107, 109, 110, 110, 110, 113, 114, 115, 116, 117
Offset: 1
A374227
a(n) is the smallest number which can be represented as the sum of three distinct positive n-th powers in exactly n ways, or -1 if no such number exists.
Original entry on oeis.org
6, 62, 5104, 5978882
Offset: 1
a(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
A214512
Least number having n orderless representations as p^2 + q^2 + r^2, where p, q, and r are primes.
Original entry on oeis.org
12, 219, 363, 699, 1179, 2019, 2259, 3891, 4059, 6459, 5379, 10899, 13179, 10659, 12579, 21819, 20979, 26859, 34419, 38379, 41019, 61299, 39459, 41811, 82131, 50379, 77451, 71379, 141099, 85491, 103971, 74571, 180411, 108339, 179739, 161139, 126819, 225099
Offset: 1
-
nn = 10^6; ps = Prime[Range[PrimePi[Sqrt[nn]]]]; t = Flatten[Table[ps[[i]]^2 + ps[[j]]^2 + ps[[k]]^2, {i, Length[ps]}, {j, i, Length[ps]}, {k, j, Length[ps]}]]; t = Select[t, # <= nn &]; t2 = Sort[Tally[t]]; u = Union[Transpose[t2][[2]]]; d = Complement[Range[u[[-1]]], u]; If[d == {}, nLim = u[[-1]], nLim = d[[1]]-1]; t3 = Table[Select[t2, #[[2]] == n &, 1][[1]], {n, nLim}]; Transpose[t3][[1]]
A374806
a(n) is the smallest number which can be represented as the sum of 3 distinct nonzero triangular numbers in exactly n ways, or -1 if no such number exists.
Original entry on oeis.org
10, 19, 37, 52, 82, 109, 136, 241, 226, 217, 247, 364, 427, 457, 541, 532, 577, 637, 961, 721, 787, 1066, 1102, 1381, 1267, 1564, 1192, 1396, 1816, 1501, 1612, 1927, 1942, 2242, 1792, 2842, 2587, 2557, 2422, 2866, 2887, 3181, 3271, 3412, 4126
Offset: 1
a(3) = 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
A374273
a(n) is the smallest number which can be represented as the sum of three distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.
Original entry on oeis.org
37, 161, 498, 1666, 2546, 7434, 16609, 25952, 48786, 49861, 72347, 127335, 183289, 196469, 416913, 466546, 494369, 506649, 801010, 1401011, 2372586, 1414009, 2003027, 3274986, 2927260, 2721677, 5592756, 8016592, 6632759, 7057914, 8401837, 13248146, 11648679, 8650006
Offset: 3
a(3) = 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
a(4) = 161 = 1^2 + 4^2 + 12^2 = 2^2 + 6^2 + 11^2 = 4^2 + 8^2 + 9^2 = 5^2 + 6^2 + 10^2.
A374693
a(n) is the smallest number which can be represented as the sum of 3 distinct nonzero fourth powers in exactly n ways, or -1 if no such number exists.
Original entry on oeis.org
98, 6578, 811538, 5978882, 1289202642, 292965218, 779888018, 5745705602, 105760443698, 49511121842, 1872511131218, 281539574498, 17673688436978
Offset: 1
a(2) = 6578 = 1^4 + 2^4 + 9^4 = 3^4 + 7^4 + 8^4.
a(3) = 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4.
A374805
a(n) is the smallest positive integer whose square can be represented as the sum of 3 distinct nonzero squares in exactly n ways, or -1 if no such number exists.
Original entry on oeis.org
1, 7, 15, 23, 31, 21, 33, 39, 49, 45, 79, 57, 95, 103, 75, 69, 127, 87, 63, 151, 93, 167, 111, 123, 99, 187, 117, 105, 161, 241, 141, 135, 153, 247, 271, 283, 177, 183, 165, 275, 147, 171, 323, 219
Offset: 0
a(3) = 23: 23^2 = 3^2 + 6^2 + 22^2 = 3^2 + 14^2 + 18^2 = 6^2 + 13^2 + 18^2.
A096021
Greatest number, not divisible by 4, having exactly n partitions into three distinct positive squares.
Original entry on oeis.org
1507, 4323, 5947, 10707, 19723, 30067, 34483, 47107, 58843, 77683, 111763, 106723, 126043, 166147, 164803, 222643, 217627, 232243, 289963, 319243, 300787, 319867, 462883, 393187, 546067, 532123, 502483, 615883, 662803, 606643
Offset: 1
Cf.
A025415 (least sum of 3 distinct nonzero squares in exactly n ways).
Comments
Examples
Links
Crossrefs
Programs
Maple
Extensions