A025550 a(n) = ( 1/1 + 1/3 + 1/5 + ... + 1/(2*n-1) )*LCM(1, 3, 5, ..., 2*n-1).
1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427
Offset: 1
Links
- Georg Fischer, Table of n, a(n) for n = 1..200 (first 39 terms from Jean-François Alcover)
- MathPages, The Algebra of an Infinite Grid of Resistors
- Physics Stack Exchange, On this infinite grid of resistors, what's the equivalent resistance?
- Eric Weisstein's World of Mathematics, Jeep Problem
Programs
-
Haskell
a025550 n = numerator $ sum $ map (1 %) $ take n [1, 3 ..] -- Reinhard Zumkeller, Jan 22 2012
-
Magma
[&+[1/d: d in i]*Lcm(i) where i is [1..2*n-1 by 2]: n in [1..21]]; // Bruno Berselli, Apr 16 2015
-
Maple
a:= n-> (f-> add(1/p, p=f)*ilcm(f[]))([2*i-1$i=1..n]): seq(a(n), n=1..40); # Alois P. Heinz, Apr 16 2015
-
Mathematica
Table[(Total[1/Range[1,2n-1,2]])LCM@@Range[1,2n-1,2],{n,30}] (* Harvey P. Dale, Sep 09 2020 *)
-
PARI
a(n)=my(v=vector(n,i,2*i-1));sum(i=1,#v,1/v[i])*lcm(v) \\ Charles R Greathouse IV, Feb 28 2013
Formula
1 + 1/3 + ... + 1/(2*n-1) = a(n)/A025547(n) = A350669(n-1)/A350670(n-1). - Jianing Song, Apr 28 2025
Extensions
Value of a(39) corrected by Jean-François Alcover, Apr 16 2015
Comments