A025555 Least common multiple (or LCM) of first n positive triangular numbers (A000217).
1, 3, 6, 30, 30, 210, 420, 1260, 1260, 13860, 13860, 180180, 180180, 180180, 360360, 6126120, 6126120, 116396280, 116396280, 116396280, 116396280, 2677114440, 2677114440, 13385572200, 13385572200, 40156716600, 40156716600
Offset: 1
Examples
a(5) = lcm{1, 3, 6, 10, 15} = 30.
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- Peter Luschny and Stefan Wehmeier, The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences, arXiv:0909.1838 [math.CA], 2009.
Programs
-
Haskell
a025555 n = a025555_list !! (n-1) a025555_list = scanl1 lcm $ tail a000217_list -- Reinhard Zumkeller, Nov 22 2013
-
Maple
HalfFarey := proc (n) local a,b,c,d,k,s; if n<2 then RETURN([1]) fi; a:=0; b:=1; c:=1; d:=n; s:=NULL; do k := iquo(n+b,d); a,b,c,d := c, d, k*c-a, k*d-b; if b < 2*a then break fi; s := s, a/b od; [s] end: A025555 := proc(n) local r; HalfFarey(n+1); subsop(nops(%) = NULL,%); mul(2*sin(Pi*r),r = %)^2 end: seq(round(evalf(A025555(i))),i=1..27); # Peter Luschny, Jun 09 2011
-
Mathematica
nn=30;With[{trnos=Accumulate[Range[nn]]},Table[LCM@@Take[trnos,n], {n,nn}]] (* Harvey P. Dale, Oct 21 2011 *) f[x_] := x + 1; a[1] = f[1]; a[n_] := LCM[f[n], a[n - 1]]; Array[a, 30]/2 (* Robert G. Wilson v, Jan 04 2013 *)
-
PARI
S=1;for(n=1,20,S=lcm(S,n*(n+1)/2);print1(S,",")) \\ Edward Jiang, Sep 08 2014
Formula
a(n) = A003418(n+1)/2. - Matthew Vandermast, Jun 04 2012
Extensions
Corrected by James Sellers
Definition rendered more precisely by Reinhard Zumkeller, Nov 22 2013