cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A185282 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of n-element subsets that can be chosen from {1,2,...,2*n^k} having element sum n^(k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 3, 0, 1, 1, 7, 36, 7, 0, 1, 1, 15, 351, 785, 18, 0, 1, 1, 31, 3240, 56217, 26404, 51, 0, 1, 1, 63, 29403, 3695545, 18878418, 1235580, 155, 0, 1, 1, 127, 265356, 238085177, 12107973904, 11163952389, 74394425, 486, 0
Offset: 0

Views

Author

Alois P. Heinz, Jan 25 2012

Keywords

Comments

A(n,k) is the number of partitions of n^(k+1) into n distinct parts <= 2*n^k.

Examples

			A(0,0) = 1: {}.
A(1,1) = 1: {1}.
A(2,2) = 3: {1,7}, {2,6}, {3,5}.
A(3,1) = 3: {1,2,6}, {1,3,5}, {2,3,4}.
A(4,1) = 7: {1,2,5,8}, {1,2,6,7}, {1,3,4,8}, {1,3,5,7}, {1,4,5,6}, {2,3,4,7}, {2,3,5,6}.
A(2,3) = 7: {1,15}, {2,14}, {3,13}, {4,12}, {5,11}, {6,10}, {7,9}.
Square array A(n,k) begins:
  1,   1,      1,         1,            1, ...
  1,   1,      1,         1,            1, ...
  0,   1,      3,         7,           15, ...
  0,   3,     36,       351,         3240, ...
  0,   7,    785,     56217,      3695545, ...
  0,  18,  26404,  18878418,  12107973904, ...
		

Crossrefs

Rows n=1-3 give: A000012, A000225, A026121.
Columns k=1-3 give: A202261, A186730, A185062.

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(it*(2*i-t+1)/2, 0,
          `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n^(k+1), 2*n^k, n):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    $RecursionLimit = 10000; b[n_, i_, t_] := b[n, i, t] = If [i < t || n < t*(t+1)/2 || n > t*(2*i-t+1)/2, 0, If[n == 0, 1, b[n, i-1, t] + If[n < i, 0, b[n-i, i-1, t-1]]]]; A[0, ] = A[1, ] = 1; A[n_ /; n > 1, 0] = 0; A[n_, k_] := b[n^(k+1), 2*n^k, n]; Table[Print[ta = Table [A[n, d-n], {n, 0, d}]]; ta, {d, 0, 9}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

A121544 Sum of all proper base 4 numbers with n digits (those not beginning with 0).

Original entry on oeis.org

6, 114, 1896, 30624, 491136, 7862784, 125822976, 2013241344, 32212156416, 515395682304, 8246335635456, 131941389041664, 2111062300164096, 33776997104615424, 540431954881806336, 8646911282940739584, 138350580546379186176, 2213609288819376390144
Offset: 1

Views

Author

Jonathan Vos Post, Sep 08 2006

Keywords

Comments

Sum of the first 3 * 4^(n-1) integers starting with 4^(n-1).
Sum of the integers from 4^(n-1) to 4^n -1.
First differences of A026337.

Examples

			a(1) = 6 = 1 + 2 + 3.
a(2) = 114 = 10_4 + 11_4 + 12_4 + 13_4 + 20_4 + 21_4 + 22_4 + 23_4 + 30_4 + 31_4 + 32_4 + 33_4 = (4+5+6+7+8+9+10+11+12+13+14+15)_10.
		

Crossrefs

Programs

  • Magma
    [3*Binomial(5*4^(n-1), 2)/5: n in [1..20]]; // G. C. Greubel, Nov 07 2024
    
  • Mathematica
    Table[3*4^(n-1)*(5*4^(n-1) - 1)/2, {n,20}] (* James C. McMahon, Oct 19 2024 *)
  • SageMath
    def A121544(n): return 3*binomial(5*4^(n-1), 2)//5
    [A121544(n) for n in range(1,21)] # G. C. Greubel, Nov 07 2024

Formula

a(n) = 3 * 4^(n-1) * (4^(n-1) + 4^n - 1)/2.
G.f.: 6*x*(1-x) / ((1-4*x)*(1-16*x)). - Colin Barker, Apr 30 2013
From G. C. Greubel, Nov 07 2024: (Start)
a(n) = (3/5)*binomial(5*4^(n-1), 2).
E.g.f.: (3/32)*(-1 - 4*exp(4*x) + 5*exp(16*x)). (End)

Extensions

More terms from Colin Barker, Apr 30 2013
Edited by Michel Marcus, Apr 15 2024

A226508 a(n) = Sum_{i=3^n..3^(n+1)-1} i.

Original entry on oeis.org

3, 33, 315, 2889, 26163, 235953, 2125035, 19129689, 172180323, 1549662273, 13947078555, 125524061289, 1129717614483, 10167461718993, 91507165036875, 823564514029689, 7412080712360643, 66708726669526113, 600378540800575995, 5403406869529706889
Offset: 0

Views

Author

Michel Marcus, Jun 10 2013

Keywords

Comments

Partial sums give 3, 36, 351, 3240, 29403,...: A026121.
a(n) is the sum of all integers having n+1 digits in their ternary expansion (without leading zeros). - Jonathan Vos Post, Sep 07 2006

Examples

			a(0) = 1+2 = 3,
a(1) = 3+4+5+6+7+8 = 33.
		

Crossrefs

Cf. A010035, A010036 (base 2), A026121, A101291 (base 10).
Cf. A007089 (numbers in base 3).

Programs

  • Mathematica
    Table[3^(n - 1) (4 3^(n + 1) - 3), {n, 0, 20}] (* Bruno Berselli, Jun 11 2013 *)
    LinearRecurrence[{12,-27},{3,33},30] (* Harvey P. Dale, Jun 19 2013 *)
  • PARI
    a(n) = sum(i=3^n, 3^(n+1)-1, i) \\ Michel Marcus, Jun 11 2013

Formula

G.f.: 3*(1-x)/(1-12*x+27*x^2). [Bruno Berselli, Jun 11 2013]
a(n) = 3^(n-1)*(4*3^(n+1)-3). [Bruno Berselli, Jun 11 2013]
a(0)=3, a(1)=33, a(n)=12*a(n-1)-27*a(n-2). - Harvey P. Dale, Jun 19 2013
Showing 1-3 of 3 results.