cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A026747 Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and 1 <= k <= n/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 11, 5, 1, 1, 7, 17, 16, 6, 1, 1, 9, 30, 44, 22, 7, 1, 1, 10, 39, 74, 66, 29, 8, 1, 1, 12, 58, 143, 184, 95, 37, 9, 1, 1, 13, 70, 201, 327, 279, 132, 46, 10, 1, 1, 15, 95, 329, 671, 790, 411, 178, 56, 11, 1, 1, 16, 110, 424, 1000, 1461, 1201, 589, 234, 67, 12, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 3,  1;
  1, 4,  4,  1;
  1, 6, 11,  5,  1;
  1, 7, 17, 16,  6, 1;
  1, 9, 30, 44, 22, 7, 1;
		

Crossrefs

Cf. A026754 (row sums).

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif (n mod 2)=0 and k List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 28 2019
  • Maple
    A026747 := proc(n,k)
        if k=0 or k = n then
            1;
        elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if ;
    end proc: # R. J. Mathar, Jun 30 2013
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && 1<=k<=n/2, T[n-1, k-1] +T[n-2, k-1] +T[n-1, k], T[n-1, k-1] +T[n-1, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 28 2019 *)
  • PARI
    T(n,k) = if(k==0 || k==n, 1, if(n%2==0 && k<=n/2, T(n-1,k-1) + T(n-2,k-1) + T(n-1,k), T(n-1,k-1) + T(n-1,k) ));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 28 2019
    

Formula

T(n, k) = number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, 2h+i)-to-(i+1, 2h+i+1) for i >= 0, h>=0.

Extensions

More terms added by G. C. Greubel, Oct 28 2019

A026749 a(n) = T(2n,n-1), T given by A026747.

Original entry on oeis.org

1, 6, 30, 143, 671, 3132, 14601, 68101, 318035, 1487661, 6971222, 32727472, 153926409, 725264305, 3423262180, 16185240446, 76648901377, 363557014067, 1726994886004, 8215502584008, 39135887682617, 186676023857041, 891557875400175
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A026747 := proc(n,k) option remember;
       if k=0 or k = n then 1;
       elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc:
    seq(A026747(2*n,n-1), n=1..30); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n, n-1], {n,30}] (* G. C. Greubel, Oct 29 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(2*n, n-1) for n in (1..30)] # G. C. Greubel, Oct 29 2019

A026748 a(n) = T(2n,n), T given by A026747.

Original entry on oeis.org

1, 3, 11, 44, 184, 790, 3452, 15278, 68290, 307696, 1395696, 6367199, 29193025, 134442102, 621609060, 2884432810, 13428450520, 62703991531, 293606387095, 1378309455352, 6485734373020, 30586630485443, 144544075759391, 684395988590939
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A026747 := proc(n,k) option remember;
       if k=0 or k = n then 1;
       elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc:
    seq(A026747(2*n,n), n=0..30); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n, n], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(2*n, n) for n in (0..30)] # G. C. Greubel, Oct 29 2019

A026750 a(n) = T(2n,n-2), T given by A026747.

Original entry on oeis.org

1, 9, 58, 329, 1753, 9020, 45442, 225860, 1112543, 5446607, 26550968, 129042976, 625860205, 3031021096, 14664729519, 70906318405, 342717456708, 1656208470644, 8003645557573, 38681730323747, 186985728069661, 904119336235884
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A026747 := proc(n,k) option remember;
       if k=0 or k = n then 1;
       elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc:
    seq(A026747(2*n,n-2), n=2..30); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n, n-2], {n,2,30}] (* G. C. Greubel, Oct 29 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(2*n, n-2) for n in (2..30)] # G. C. Greubel, Oct 29 2019

A026751 a(n) = T(2n-1,n-1), T given by A026747.

Original entry on oeis.org

1, 4, 17, 74, 327, 1461, 6584, 29879, 136391, 625731, 2883357, 13338421, 61920497, 288368511, 1346873365, 6307694990, 29613690966, 139352892908, 657163401162, 3105304341356, 14701236957028, 69722518168060, 331220099616432
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A026747 := proc(n,k) option remember;
       if k=0 or k = n then 1;
       elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc:
    seq(A026747(2*n-1,n-1), n=1..30); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n-1, n-1], {n,30}] (* G. C. Greubel, Oct 29 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(2*n-1, n-1) for n in (1..30)] # G. C. Greubel, Oct 29 2019

A026752 a(n) = T(2n-1,n-2), T given by A026747.

Original entry on oeis.org

1, 7, 39, 201, 1000, 4885, 23621, 113543, 543895, 2600204, 12417829, 59278440, 282969385, 1351124510, 6454283276, 30849969965, 147555219782, 706274470775, 3383203356648, 16219148141581, 77817618006364, 373661751926702
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A026747 := proc(n,k) option remember;
       if k=0 or k = n then 1;
       elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc:
    seq(A026747(2*n-1,n-2), n=2..30); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n-1, n-2], {n,2,30}] (* G. C. Greubel, Oct 29 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(2*n-1, n-2) for n in (2..30)] # G. C. Greubel, Oct 29 2019

A026753 a(n) = T(n, floor(n/2)), T given by A026747.

Original entry on oeis.org

1, 1, 3, 4, 11, 17, 44, 74, 184, 327, 790, 1461, 3452, 6584, 15278, 29879, 68290, 136391, 307696, 625731, 1395696, 2883357, 6367199, 13338421, 29193025, 61920497, 134442102, 288368511, 621609060, 1346873365, 2884432810
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A026747 := proc(n,k) option remember;
       if k=0 or k = n then 1;
       elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc:
    seq(A026747(n,floor(n/2)), n=0..30); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[n, Floor[n/2]], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(n, floor(n/2)) for n in (0..30)] # G. C. Greubel, Oct 29 2019

A026755 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026747.

Original entry on oeis.org

1, 1, 4, 5, 18, 25, 84, 124, 398, 612, 1901, 3012, 9126, 14800, 43968, 72658, 212417, 356544, 1028520, 1749344, 4989477, 8583258, 24244139, 42121079, 117973702, 206754379, 574811040, 1015179978, 2803969443, 4986329826
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A026747 := proc(n,k) option remember;
       if k=0 or k = n then 1;
       elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc:
    seq(add(A026747(n,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[Sum[T[n, k], Floor[n/2]], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 29 2019

A026756 a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026747.

Original entry on oeis.org

1, 3, 8, 18, 42, 90, 204, 432, 972, 2052, 4610, 9726, 21859, 46125, 103783, 219099, 493699, 1042899, 2353716, 4975350, 11247138, 23790714, 53867343, 114020601, 258571256, 547672566, 1243848888, 2636201532, 5995717860
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A026747 := proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k = n then 1;
       elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc:
    seq(add(add(A026747(i,j), j=0..n), i=0..n), n=0..30); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[i, j], {i,0,n},{j,0,n}], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(sum(T(i,j) for j in (0..n)) for i in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 29 2019

A026757 a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026747.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 20, 32, 58, 102, 169, 302, 527, 888, 1573, 2741, 4661, 8215, 14316, 24481, 43023, 74998, 128747, 225867, 393838, 678047, 1188201, 2072239, 3575728, 6261248, 10921278, 18879372, 33040083, 57637061
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A026747 := proc(n,k) option remember;
       if k=0 or k = n then 1;
       elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc:
    seq(add(A026747(n-k,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 29 2019
Showing 1-10 of 10 results.