A026754
a(n) = Sum{k=0..n} T(n,k), T given by A026747.
Original entry on oeis.org
1, 2, 5, 10, 24, 48, 114, 228, 540, 1080, 2558, 5116, 12133, 24266, 57658, 115316, 274600, 549200, 1310817, 2621634, 6271788, 12543576, 30076629, 60153258, 144550655, 289101310, 696176322, 1392352644, 3359516328
Offset: 0
-
A026747 := proc(n,k) option remember;
if k=0 or k = n then 1;
elif type(n,'even') and k <= n/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc:
seq(add(A026747(n,k), k=0..n), n=0..30); # G. C. Greubel, Oct 29 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[Sum[T[n, k],{k,0,n}], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(T(n, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 29 2019
A026748
a(n) = T(2n,n), T given by A026747.
Original entry on oeis.org
1, 3, 11, 44, 184, 790, 3452, 15278, 68290, 307696, 1395696, 6367199, 29193025, 134442102, 621609060, 2884432810, 13428450520, 62703991531, 293606387095, 1378309455352, 6485734373020, 30586630485443, 144544075759391, 684395988590939
Offset: 0
-
A026747 := proc(n,k) option remember;
if k=0 or k = n then 1;
elif type(n,'even') and k <= n/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc:
seq(A026747(2*n,n), n=0..30); # G. C. Greubel, Oct 29 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n, n], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n, n) for n in (0..30)] # G. C. Greubel, Oct 29 2019
A026750
a(n) = T(2n,n-2), T given by A026747.
Original entry on oeis.org
1, 9, 58, 329, 1753, 9020, 45442, 225860, 1112543, 5446607, 26550968, 129042976, 625860205, 3031021096, 14664729519, 70906318405, 342717456708, 1656208470644, 8003645557573, 38681730323747, 186985728069661, 904119336235884
Offset: 2
-
A026747 := proc(n,k) option remember;
if k=0 or k = n then 1;
elif type(n,'even') and k <= n/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc:
seq(A026747(2*n,n-2), n=2..30); # G. C. Greubel, Oct 29 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n, n-2], {n,2,30}] (* G. C. Greubel, Oct 29 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n, n-2) for n in (2..30)] # G. C. Greubel, Oct 29 2019
A026751
a(n) = T(2n-1,n-1), T given by A026747.
Original entry on oeis.org
1, 4, 17, 74, 327, 1461, 6584, 29879, 136391, 625731, 2883357, 13338421, 61920497, 288368511, 1346873365, 6307694990, 29613690966, 139352892908, 657163401162, 3105304341356, 14701236957028, 69722518168060, 331220099616432
Offset: 1
-
A026747 := proc(n,k) option remember;
if k=0 or k = n then 1;
elif type(n,'even') and k <= n/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc:
seq(A026747(2*n-1,n-1), n=1..30); # G. C. Greubel, Oct 29 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n-1, n-1], {n,30}] (* G. C. Greubel, Oct 29 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n-1, n-1) for n in (1..30)] # G. C. Greubel, Oct 29 2019
A026752
a(n) = T(2n-1,n-2), T given by A026747.
Original entry on oeis.org
1, 7, 39, 201, 1000, 4885, 23621, 113543, 543895, 2600204, 12417829, 59278440, 282969385, 1351124510, 6454283276, 30849969965, 147555219782, 706274470775, 3383203356648, 16219148141581, 77817618006364, 373661751926702
Offset: 2
-
A026747 := proc(n,k) option remember;
if k=0 or k = n then 1;
elif type(n,'even') and k <= n/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc:
seq(A026747(2*n-1,n-2), n=2..30); # G. C. Greubel, Oct 29 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n-1, n-2], {n,2,30}] (* G. C. Greubel, Oct 29 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n-1, n-2) for n in (2..30)] # G. C. Greubel, Oct 29 2019
A026753
a(n) = T(n, floor(n/2)), T given by A026747.
Original entry on oeis.org
1, 1, 3, 4, 11, 17, 44, 74, 184, 327, 790, 1461, 3452, 6584, 15278, 29879, 68290, 136391, 307696, 625731, 1395696, 2883357, 6367199, 13338421, 29193025, 61920497, 134442102, 288368511, 621609060, 1346873365, 2884432810
Offset: 0
-
A026747 := proc(n,k) option remember;
if k=0 or k = n then 1;
elif type(n,'even') and k <= n/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc:
seq(A026747(n,floor(n/2)), n=0..30); # G. C. Greubel, Oct 29 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[n, Floor[n/2]], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(n, floor(n/2)) for n in (0..30)] # G. C. Greubel, Oct 29 2019
A026755
a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026747.
Original entry on oeis.org
1, 1, 4, 5, 18, 25, 84, 124, 398, 612, 1901, 3012, 9126, 14800, 43968, 72658, 212417, 356544, 1028520, 1749344, 4989477, 8583258, 24244139, 42121079, 117973702, 206754379, 574811040, 1015179978, 2803969443, 4986329826
Offset: 0
-
A026747 := proc(n,k) option remember;
if k=0 or k = n then 1;
elif type(n,'even') and k <= n/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc:
seq(add(A026747(n,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 29 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[Sum[T[n, k], Floor[n/2]], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 29 2019
A026756
a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026747.
Original entry on oeis.org
1, 3, 8, 18, 42, 90, 204, 432, 972, 2052, 4610, 9726, 21859, 46125, 103783, 219099, 493699, 1042899, 2353716, 4975350, 11247138, 23790714, 53867343, 114020601, 258571256, 547672566, 1243848888, 2636201532, 5995717860
Offset: 0
-
A026747 := proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n,'even') and k <= n/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc:
seq(add(add(A026747(i,j), j=0..n), i=0..n), n=0..30); # G. C. Greubel, Oct 29 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[i, j], {i,0,n},{j,0,n}], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(sum(T(i,j) for j in (0..n)) for i in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 29 2019
A026757
a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026747.
Original entry on oeis.org
1, 1, 2, 4, 6, 11, 20, 32, 58, 102, 169, 302, 527, 888, 1573, 2741, 4661, 8215, 14316, 24481, 43023, 74998, 128747, 225867, 393838, 678047, 1188201, 2072239, 3575728, 6261248, 10921278, 18879372, 33040083, 57637061
Offset: 0
-
A026747 := proc(n,k) option remember;
if k=0 or k = n then 1;
elif type(n,'even') and k <= n/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc:
seq(add(A026747(n-k,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 29 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 29 2019
A210381
Triangle by rows, derived from the beheaded Pascal's triangle, A074909.
Original entry on oeis.org
1, 0, 2, 0, 1, 3, 0, 1, 3, 4, 0, 1, 4, 6, 5, 0, 1, 5, 10, 10, 6, 0, 1, 6, 15, 20, 15, 7, 0, 1, 7, 21, 35, 35, 21, 8, 0, 1, 8, 28, 56, 70, 56, 28, 9, 0, 1, 9, 36, 84, 126, 126, 84, 36, 10, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11
Offset: 0
{1},
{0, 2},
{0, 1, 3},
{0, 1, 3, 4},
{0, 1, 4, 6, 5},
{0, 1, 5, 10, 10, 6},
{0, 1, 6, 15, 20, 15, 7},
{0, 1, 7, 21, 35, 35, 21, 8},
{0, 1, 8, 28, 56, 70, 56, 28, 9},
{0, 1, 9, 36, 84, 126, 126, 84, 36, 10},
{0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11}
...
- Konrad Knopp, Elements of the Theory of Functions, Dover, 1952,pp 117-118.
-
t2[n_, m_] = If[m - 1 <= n, Binomial[n, m - 1], 0];
O2 = Table[Table[If[n == m, t2[n, m] + 1, t2[n, m]], {m, 0, n}], {n, 0, 10}];
Flatten[O2]
Showing 1-10 of 10 results.
Comments