A026765
a(n) = Sum_{k=0..n} T(n,k), T given by A026758.
Original entry on oeis.org
1, 2, 4, 9, 18, 41, 82, 188, 376, 867, 1734, 4020, 8040, 18735, 37470, 87735, 175470, 412715, 825430, 1949624, 3899248, 9245721, 18491442, 44003717, 88007434, 210121733, 420243466, 1006390014, 2012780028, 4833517551
Offset: 0
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n,'odd') and k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(add(T(n,k), k=0..n), n=0..30); # G. C. Greubel, Oct 31 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[n,k],{k,0,n}], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(T(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 31 2019
A026759
a(n) = T(2n, n), T given by A026758.
Original entry on oeis.org
1, 2, 7, 27, 109, 453, 1922, 8284, 36155, 159435, 709246, 3178992, 14343567, 65099245, 297015765, 1361584755, 6268757195, 28975155915, 134410918700, 625578384150, 2920488902795, 13672762887465, 64179220019365, 301987822527627
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( ((1-x)*Sqrt(1 - 4*x) - Sqrt(1 - 6*x + 5*x^2))/(2*x^2) )); // G. C. Greubel, Oct 31 2019
-
seq(coeff(series(((1-x)*sqrt(1-4*x) - sqrt(1 -6*x +5*x^2))/(2*x^2), x, n+2), x, n), n = 0..30); # G. C. Greubel, Oct 31 2019
-
CoefficientList[Normal[Series[((1-x)Sqrt[1-4x] -Sqrt[1-6x+5x^2])/(2x^2), {x, 0, 30}]], x] (* David Callan, Feb 01 2014 *)
-
my(x='x+O('x^30)); Vec(((1-x)*sqrt(1 - 4*x) - sqrt(1 - 6*x + 5*x^2))/(2*x^2)) \\ G. C. Greubel, Oct 31 2019
-
def A077952_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(((1-x)*sqrt(1-4*x) - sqrt(1-6*x+5*x^2))/(2*x^2)).list()
A077952_list(30) # G. C. Greubel, Oct 31 2019
A026760
a(n) = T(2n, n-1), T given by A026758.
Original entry on oeis.org
1, 5, 23, 104, 469, 2119, 9607, 43727, 199819, 916631, 4220267, 19497608, 90370622, 420136173, 1958787580, 9156770130, 42912496696, 201579245739, 949002525067, 4477049676288, 21162505063028, 100217666089863, 475421115762173
Offset: 1
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n,'odd') and k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(T(2*n,n-1), n=1..30); # G. C. Greubel, Oct 31 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2 n, n-1], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n, n-1) for n in (1..30)] # G. C. Greubel, Oct 31 2019
A026761
a(n) = T(2n, n-2), T given by A026758.
Original entry on oeis.org
1, 8, 48, 259, 1328, 6622, 32483, 157739, 761128, 3657815, 17534231, 83925062, 401363296, 1918822635, 9173429111, 43866599736, 209853869150, 1004463716937, 4810867131369, 23057388013314, 110588897473219, 530808778620583
Offset: 2
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n,'odd') and k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(T(2*n,n-2), n=2..30); # G. C. Greubel, Oct 31 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2 n, n-2], {n, 2, 30}] (* G. C. Greubel, Oct 31 2019 *)
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n, n-2) for n in (2..30)] # G. C. Greubel, Oct 31 2019
A026762
a(n) = T(2n-1,n-1), T given by A026758. Also T(2n+1,n+1), T given by A026747.
Original entry on oeis.org
1, 4, 16, 66, 279, 1201, 5242, 23133, 103015, 462269, 2088146, 9487405, 43328580, 198798447, 915950385, 4236322720, 19661850045, 91549502656, 427539667095, 2002120576312, 9399659155395, 44234927105888, 208631813215116
Offset: 1
Cf.
A026747,
A026758,
A026759,
A026760,
A026761,
A026763,
A026764,
A026765,
A026766,
A026767,
A026768.
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n,'odd') and k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(T(2*n-1,n-1), n=1..30); # G. C. Greubel, Oct 31 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2n-1, n-1], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n-1, n-1) for n in (1..30)] # G. C. Greubel, Oct 31 2019
A026763
a(n) = T(2n-1,n-2), T given by A026758.
Original entry on oeis.org
1, 7, 38, 190, 918, 4365, 20594, 96804, 454362, 2132121, 10010203, 47042042, 221337726, 1042837195, 4920447410, 23250646651, 110029743083, 521462857972, 2474929099976, 11762845907633, 55982738983975, 266789302547057
Offset: 2
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n,'odd') and k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(T(2*n-1,n-2), n=2..30); # G. C. Greubel, Oct 31 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2n-1, n-2], {n, 2, 30}] (* G. C. Greubel, Oct 31 2019 *)
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n-1, n-2) for n in (2..30)] # G. C. Greubel, Oct 31 2019
A026764
a(n) = T(n, floor(n/2)), T given by A026758.
Original entry on oeis.org
1, 1, 2, 4, 7, 16, 27, 66, 109, 279, 453, 1201, 1922, 5242, 8284, 23133, 36155, 103015, 159435, 462269, 709246, 2088146, 3178992, 9487405, 14343567, 43328580, 65099245, 198798447, 297015765, 915950385, 1361584755, 4236322720
Offset: 0
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n,'odd') and k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(T(n, floor(n/2)), n=0..30); # G. C. Greubel, Oct 31 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]] ]; Table[T[n, Floor[n/2]], {n,0,30}] (* G. C. Greubel, Oct 31 2019 *)
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(n, floor(n/2)) for n in (0..30)] # G. C. Greubel, Oct 31 2019
A026766
a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026758.
Original entry on oeis.org
1, 1, 3, 5, 13, 24, 59, 115, 273, 552, 1278, 2655, 6031, 12795, 28632, 61775, 136572, 298764, 653948, 1447225, 3141427, 7020833, 15132512, 34106865, 73069892, 165903082, 353576829, 807957495, 1714132308, 3939206346
Offset: 0
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n,'odd') and k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq( add(T(n,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 31 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[n,k], {k,0,Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 31 2019
A026767
a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026758.
Original entry on oeis.org
1, 3, 7, 16, 34, 75, 157, 345, 721, 1588, 3322, 7342, 15382, 34117, 71587, 159322, 334792, 747507, 1572937, 3522561, 7421809, 16667530, 35158972, 79162689, 167170123, 377291856, 797535322, 1803925336, 3816705364
Offset: 0
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n,'odd') and k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq( add(add(T(j,k), k=0..n), j=0..n), n=0..30); # G. C. Greubel, Oct 31 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[j,k], {k,0,n}, {j,0,n}], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(sum(T(j,k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 31 2019
Showing 1-9 of 9 results.
Comments