cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A026769 Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; T(2,1)=2; for n >= 3 and 1<=k<=n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if 1<=k<=(n-1)/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 7, 4, 1, 1, 8, 17, 11, 5, 1, 1, 10, 31, 28, 16, 6, 1, 1, 12, 49, 76, 44, 22, 7, 1, 1, 14, 71, 156, 120, 66, 29, 8, 1, 1, 16, 97, 276, 352, 186, 95, 37, 9, 1, 1, 18, 127, 444, 784, 538, 281, 132, 46, 10, 1, 1, 20, 161, 668, 1504, 1674, 819, 413, 178, 56, 11, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) is the number of paths from (0, 0) to (k,n-k) in the directed graph having vertices (i, j) (i and j in range [0,n]) and edges (i,j)-to-(i+1,j) and (i,j)-to-(i,j+1) for i,j>=0 and edges (i,i+h)-to-(i+1,i+h+1) for i>=0, h>=1.
Also, square array R read by antidiagonals where R(i,j) = T(i+j,i), which is equal to the number of paths from (0,0) to (i,j) in the above graph. - Max Alekseyev, Dec 02 2015

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   3,   1;
  1,  6,   7,   4,   1;
  1,  8,  17,  11,   5,   1;
  1, 10,  31,  28,  16,   6,   1;
  1, 12,  49,  76,  44,  22,   7,   1;
  1, 14,  71, 156, 120,  66,  29,   8,  1;
  1, 16,  97, 276, 352, 186,  95,  37,  9,  1;
  1, 18, 127, 444, 784, 538, 281, 132, 46, 10, 1;
		

Crossrefs

Cf. A026780 (a variant with h>=0)

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif (n=2 and k=1) then return 2;
        elif (k <= Int((n-1)/2)) then return T(n-1,k-1)+T(n-2,k-1) +T(n-1,k);
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 31 2019
  • Maple
    A026769 := proc(n,k)
        option remember;
        if k= 0 or k =n then
            1;
        elif n= 2 and k= 1 then
            2;
        elif k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        fi ;
    end proc: # R. J. Mathar, Jun 15 2014
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k <= (n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2017, from Maple *)
  • PARI
    T(n,k) = if(k==0 || k==n, 1, if(n==2 && k==1, 2, if( k<=(n-1)/2, T(n-1,k-1) + T(n-2,k-1) + T(n-1,k), T(n-1,k-1) + T(n-1,k) )));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 31 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (n==2 and k==1): return 2
        elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 31 2019
    

Formula

For n>=2*k, T(n,k) = coefficient of x^k in G(x)*S(x)^(n-2*k). For n<=2*k, T(n,k) = coefficient of x^(n-k) in G(x)*C(x)^(2*k-n). Here C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108, S(x)=(1-x - sqrt(1-6*x+x^2) )/(2*x) is o.g.f. for A006318, and G(x)=1/(1-x*(C(x)+S(x))) is o.g.f. for A026770. - Max Alekseyev, Dec 02 2015

Extensions

Offset corrected by R. J. Mathar, Jun 15 2014
More terms added by G. C. Greubel, Oct 31 2019

A026770 a(n) = T(2n,n), T given by A026769.

Original entry on oeis.org

1, 2, 7, 28, 120, 538, 2493, 11854, 57558, 284392, 1426038, 7241356, 37173304, 192638992, 1006564439, 5297715628, 28061959428, 149491856978, 800425486692, 4305263668514, 23251846197766, 126044501870378, 685569373724964, 3740339567665558, 20463965229643218, 112250484320225118
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when below the diagonal, (1,1). - Alois P. Heinz, Sep 14 2016

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(x + Sqrt(1-4*x) + Sqrt(1-6*x+x^2)) )); // G. C. Greubel, Nov 01 2019
    
  • Maple
    seq(coeff(series(2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
    a[n_] := T[2n, n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 24 2019 *)
  • PARI
    { C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51)))/2/x; Vec(1/(1-x*(C+S))) } /* Max Alekseyev, Dec 02 2015 */
    
  • Sage
    def A026770_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)) ).list()
    A026770_list(30) # G. C. Greubel, Nov 01 2019

Formula

O.g.f.: 1/(1-x*(C(x)+S(x))), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108 and S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318. - Max Alekseyev, Dec 02 2015

A026772 a(n) = T(2n, n-2), T given by A026769.

Original entry on oeis.org

1, 10, 71, 444, 2616, 14938, 83821, 465654, 2572166, 14164320, 77886902, 428113940, 2353823912, 12950837432, 71326701751, 393289209772, 2171308560036, 12003376308370, 66445540183348, 368304502202306, 2044177115127750
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k=n then 1;
       elif n=2 and k=1 then 2;
       elif k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq(T(2*n, n-2), n=2..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[T[2*n, n-2], {n,2,30}] (* G. C. Greubel, Nov 01 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (n==2 and k==1): return 2
        elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(2*n, n-2) for n in (2..30)] # G. C. Greubel, Nov 01 2019

A026773 a(n) = T(2n-1,n-1), T given by A026769. Also T(2n+1,n+1), T given by A026780.

Original entry on oeis.org

1, 4, 17, 76, 352, 1674, 8129, 40156, 201236, 1020922, 5234660, 27089726, 141335846, 742712598, 3927908193, 20891799036, 111688381228, 599841215226, 3234957053984, 17512055200470, 95125188934942, 518340392855286, 2832580291316092, 15520177744727766
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..n], k-> Binomial(n+1,k)*Binomial(n+k+1, n+1)/(k+1) )); # G. C. Greubel, Nov 01 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt(1-4*x) - Sqrt(1-6*x+x^2))/(2*x) -1/2 )); // G. C. Greubel, Nov 01 2019
    
  • Maple
    seq(coeff(series((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2, x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    Rest@CoefficientList[Series[(Sqrt[1-4*x] - Sqrt[1-6*x+x^2])/(2*x) -1/2, {x,0,30}], x] (* G. C. Greubel, Nov 01 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2) \\ G. C. Greubel, Nov 01 2019
    
  • Sage
    def A026773_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2).list()
    a=A026773_list(30); a[1:] # G. C. Greubel, Nov 01 2019
    

Formula

From Vladeta Jovovic, Nov 23 2003: (Start)
a(n) = A006318(n) - A000108(n).
G.f.: (sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2. (End)
From Paul Barry, May 19 2005: (Start)
a(n) = Sum_{k=0..n} C(n+k+1, n+1)*C(n+1, k)/(k+1).
a(n) = Sum_{k=0..n+1} C(n+2, k)*C(n+k, n+1)/(n+2). (End)
D-finite with recurrence n*(n+1)*a(n) -n*(11*n-7)*a(n-1) +(37*n^2-95*n+54)*a(n-2) +(-49*n^2+269*n-354)*a(n-3) +6*(9*n^2-71*n+138)*a(n-4) -4*(2*n-9)*(n-5)*a(n-5)=0. - R. J. Mathar, Aug 05 2021

A026774 a(n) = T(2n-1,n-2), T given by A026769.

Original entry on oeis.org

1, 8, 49, 276, 1504, 8082, 43193, 230536, 1231484, 6591350, 35369380, 190329098, 1027180798, 5559635866, 30176648513, 164237973028, 896188159820, 4902187071922, 26877397858264, 147684225578318, 813159429830590
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k=n then 1;
       elif n=2 and k=1 then 2;
       elif k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq(T(2*n-1, n-2), n=2..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[T[2*n-1, n-2], {n,2,30}] (* G. C. Greubel, Nov 01 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (n==2 and k==1): return 2
        elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(2*n-1, n-2) for n in (2..30)] # G. C. Greubel, Nov 01 2019

A026775 a(n) = T(n, floor(n/2)), T given by A026769.

Original entry on oeis.org

1, 1, 2, 4, 7, 17, 28, 76, 120, 352, 538, 1674, 2493, 8129, 11854, 40156, 57558, 201236, 284392, 1020922, 1426038, 5234660, 7241356, 27089726, 37173304, 141335846, 192638992, 742712598, 1006564439, 3927908193, 5297715628
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k=n then 1;
       elif n=2 and k=1 then 2;
       elif k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq(T(n, floor(n/2)), n=0..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[T[n, Floor[n/2]], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (n==2 and k==1): return 2
        elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(n, floor(n/2)) for n in (0..30)] # G. C. Greubel, Nov 01 2019

A026776 a(n) = Sum_{k=0..n} T(n,k), T given by A026769.

Original entry on oeis.org

1, 2, 4, 9, 19, 43, 93, 212, 466, 1070, 2382, 5506, 12386, 28800, 65356, 152745, 349183, 819639, 1885361, 4441719, 10270279, 24269629, 56363319, 133529869, 311255601, 738947515, 1727873793, 4109314729, 9634406661, 22946573863
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k=n then 1;
       elif n=2 and k=1 then 2;
       elif k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq(add(T(n, k), k=0..n), n=0..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n,k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (n==2 and k==1): return 2
        elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(T(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 01 2019

A026777 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026769.

Original entry on oeis.org

1, 1, 3, 5, 14, 26, 70, 138, 362, 742, 1912, 4028, 10249, 22033, 55547, 121273, 303641, 670997, 1671233, 3729071, 9250099, 20803231, 51437219, 116436313, 287152067, 653567143, 1608416195, 3677760541, 9035150126, 20741496354
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k=n then 1;
       elif n=2 and k=1 then 2;
       elif k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq( add(T(n,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n,k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (n==2 and k==1): return 2
        elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Nov 01 2019

A026779 a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026769.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 17, 32, 56, 97, 181, 322, 567, 1053, 1892, 3369, 6241, 11286, 20255, 37463, 68044, 122809, 226896, 413376, 749159, 1382990, 2525162, 4590351, 8468738, 15487526, 28218889, 52035094, 95273724, 173898941
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k=n then 1;
       elif n=2 and k=1 then 2;
       elif k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq(add(T(n-k,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n-k,k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (n==2 and k==1): return 2
        elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(T(n-k,k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Nov 01 2019

A026778 a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026769.

Original entry on oeis.org

1, 3, 7, 16, 35, 78, 171, 383, 849, 1919, 4301, 9807, 22193, 50993, 116349, 269094, 618277, 1437916, 3323277, 7764996, 18035275, 42304904, 98668223, 232198092, 543453693, 1282401208, 3010275001, 7119589730, 16753996391
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k=n then 1;
       elif n=2 and k=1 then 2;
       elif k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq(add(add(T(j,k), k=0..n), j=0..n), n=0..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[j,k], {k,0,n}, {j,0,n}], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if n < 0:
            return 0
        elif (k==0 or k==n): return 1
        elif (n==2 and k==1): return 2
        elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(sum(T(j,k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 01 2019
Showing 1-10 of 10 results.