A026769
Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; T(2,1)=2; for n >= 3 and 1<=k<=n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if 1<=k<=(n-1)/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 7, 4, 1, 1, 8, 17, 11, 5, 1, 1, 10, 31, 28, 16, 6, 1, 1, 12, 49, 76, 44, 22, 7, 1, 1, 14, 71, 156, 120, 66, 29, 8, 1, 1, 16, 97, 276, 352, 186, 95, 37, 9, 1, 1, 18, 127, 444, 784, 538, 281, 132, 46, 10, 1, 1, 20, 161, 668, 1504, 1674, 819, 413, 178, 56, 11, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 6, 7, 4, 1;
1, 8, 17, 11, 5, 1;
1, 10, 31, 28, 16, 6, 1;
1, 12, 49, 76, 44, 22, 7, 1;
1, 14, 71, 156, 120, 66, 29, 8, 1;
1, 16, 97, 276, 352, 186, 95, 37, 9, 1;
1, 18, 127, 444, 784, 538, 281, 132, 46, 10, 1;
-
T:= function(n,k)
if k=0 or k=n then return 1;
elif (n=2 and k=1) then return 2;
elif (k <= Int((n-1)/2)) then return T(n-1,k-1)+T(n-2,k-1) +T(n-1,k);
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 31 2019
-
A026769 := proc(n,k)
option remember;
if k= 0 or k =n then
1;
elif n= 2 and k= 1 then
2;
elif k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
fi ;
end proc: # R. J. Mathar, Jun 15 2014
-
T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k <= (n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2017, from Maple *)
-
T(n,k) = if(k==0 || k==n, 1, if(n==2 && k==1, 2, if( k<=(n-1)/2, T(n-1,k-1) + T(n-2,k-1) + T(n-1,k), T(n-1,k-1) + T(n-1,k) )));
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 31 2019
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 31 2019
A026770
a(n) = T(2n,n), T given by A026769.
Original entry on oeis.org
1, 2, 7, 28, 120, 538, 2493, 11854, 57558, 284392, 1426038, 7241356, 37173304, 192638992, 1006564439, 5297715628, 28061959428, 149491856978, 800425486692, 4305263668514, 23251846197766, 126044501870378, 685569373724964, 3740339567665558, 20463965229643218, 112250484320225118
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(x + Sqrt(1-4*x) + Sqrt(1-6*x+x^2)) )); // G. C. Greubel, Nov 01 2019
-
seq(coeff(series(2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
-
T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
a[n_] := T[2n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 24 2019 *)
-
{ C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51)))/2/x; Vec(1/(1-x*(C+S))) } /* Max Alekseyev, Dec 02 2015 */
-
def A026770_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)) ).list()
A026770_list(30) # G. C. Greubel, Nov 01 2019
A026771
a(n) = T(2n,n-1), T given by A026769.
Original entry on oeis.org
1, 6, 31, 156, 784, 3962, 20173, 103522, 535294, 2787700, 14613710, 77072816, 408737760, 2178631156, 11666175215, 62734622764, 338660977020, 1834690352066, 9971834477972, 54361287536706, 297170702049966, 1628670524735842
Offset: 1
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(T(2*n, n-1), n=1..30); # G. C. Greubel, Nov 01 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[T[2*n, n-1], {n, 30}] (* G. C. Greubel, Nov 01 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n, n-1) for n in (1..30)] # G. C. Greubel, Nov 01 2019
A026773
a(n) = T(2n-1,n-1), T given by A026769. Also T(2n+1,n+1), T given by A026780.
Original entry on oeis.org
1, 4, 17, 76, 352, 1674, 8129, 40156, 201236, 1020922, 5234660, 27089726, 141335846, 742712598, 3927908193, 20891799036, 111688381228, 599841215226, 3234957053984, 17512055200470, 95125188934942, 518340392855286, 2832580291316092, 15520177744727766
Offset: 1
-
List([0..30], n-> Sum([0..n], k-> Binomial(n+1,k)*Binomial(n+k+1, n+1)/(k+1) )); # G. C. Greubel, Nov 01 2019
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt(1-4*x) - Sqrt(1-6*x+x^2))/(2*x) -1/2 )); // G. C. Greubel, Nov 01 2019
-
seq(coeff(series((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2, x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
-
Rest@CoefficientList[Series[(Sqrt[1-4*x] - Sqrt[1-6*x+x^2])/(2*x) -1/2, {x,0,30}], x] (* G. C. Greubel, Nov 01 2019 *)
-
my(x='x+O('x^30)); Vec((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2) \\ G. C. Greubel, Nov 01 2019
-
def A026773_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2).list()
a=A026773_list(30); a[1:] # G. C. Greubel, Nov 01 2019
A026774
a(n) = T(2n-1,n-2), T given by A026769.
Original entry on oeis.org
1, 8, 49, 276, 1504, 8082, 43193, 230536, 1231484, 6591350, 35369380, 190329098, 1027180798, 5559635866, 30176648513, 164237973028, 896188159820, 4902187071922, 26877397858264, 147684225578318, 813159429830590
Offset: 2
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(T(2*n-1, n-2), n=2..30); # G. C. Greubel, Nov 01 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[T[2*n-1, n-2], {n,2,30}] (* G. C. Greubel, Nov 01 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(2*n-1, n-2) for n in (2..30)] # G. C. Greubel, Nov 01 2019
A026775
a(n) = T(n, floor(n/2)), T given by A026769.
Original entry on oeis.org
1, 1, 2, 4, 7, 17, 28, 76, 120, 352, 538, 1674, 2493, 8129, 11854, 40156, 57558, 201236, 284392, 1020922, 1426038, 5234660, 7241356, 27089726, 37173304, 141335846, 192638992, 742712598, 1006564439, 3927908193, 5297715628
Offset: 0
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(T(n, floor(n/2)), n=0..30); # G. C. Greubel, Nov 01 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[T[n, Floor[n/2]], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[T(n, floor(n/2)) for n in (0..30)] # G. C. Greubel, Nov 01 2019
A026776
a(n) = Sum_{k=0..n} T(n,k), T given by A026769.
Original entry on oeis.org
1, 2, 4, 9, 19, 43, 93, 212, 466, 1070, 2382, 5506, 12386, 28800, 65356, 152745, 349183, 819639, 1885361, 4441719, 10270279, 24269629, 56363319, 133529869, 311255601, 738947515, 1727873793, 4109314729, 9634406661, 22946573863
Offset: 0
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(add(T(n, k), k=0..n), n=0..30); # G. C. Greubel, Nov 01 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n,k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(T(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 01 2019
A026777
a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026769.
Original entry on oeis.org
1, 1, 3, 5, 14, 26, 70, 138, 362, 742, 1912, 4028, 10249, 22033, 55547, 121273, 303641, 670997, 1671233, 3729071, 9250099, 20803231, 51437219, 116436313, 287152067, 653567143, 1608416195, 3677760541, 9035150126, 20741496354
Offset: 0
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq( add(T(n,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Nov 01 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n,k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Nov 01 2019
A026779
a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026769.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 17, 32, 56, 97, 181, 322, 567, 1053, 1892, 3369, 6241, 11286, 20255, 37463, 68044, 122809, 226896, 413376, 749159, 1382990, 2525162, 4590351, 8468738, 15487526, 28218889, 52035094, 95273724, 173898941
Offset: 0
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(add(T(n-k,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Nov 01 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n-k,k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(T(n-k,k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Nov 01 2019
A026778
a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026769.
Original entry on oeis.org
1, 3, 7, 16, 35, 78, 171, 383, 849, 1919, 4301, 9807, 22193, 50993, 116349, 269094, 618277, 1437916, 3323277, 7764996, 18035275, 42304904, 98668223, 232198092, 543453693, 1282401208, 3010275001, 7119589730, 16753996391
Offset: 0
-
T:= proc(n,k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if ;
end proc;
seq(add(add(T(j,k), k=0..n), j=0..n), n=0..30); # G. C. Greubel, Nov 01 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[j,k], {k,0,n}, {j,0,n}], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
-
@CachedFunction
def T(n, k):
if n < 0:
return 0
elif (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[sum(sum(T(j,k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 01 2019
Showing 1-10 of 10 results.
Comments