cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026813 Number of partitions of n in which the greatest part is 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618, 733, 860, 1009, 1175, 1367, 1579, 1824, 2093, 2400, 2738, 3120, 3539, 4011, 4526, 5102, 5731, 6430, 7190, 8033, 8946, 9953, 11044, 12241
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..70],n->NrPartitions(n,7)); # Muniru A Asiru, May 17 2018
    
  • Magma
    [#Partitions(n,7): n in [0..53]]; // Marius A. Burtea, Jul 01 2019
  • Mathematica
    Table[ Length[ Select[ Partitions[n], First[ # ] == 7 & ]], {n, 1, 60} ]
    CoefficientList[Series[x^7/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
    Drop[LinearRecurrence[{1,1,0,0,-1,0,-1,-1,0,1,1,2,0,0,0,-2,-1,-1,0,1,1,0,1,0,0,-1,-1,1}, Append[Table[0,{27}],1],121],20] (* Robert A. Russell, May 17 2018 *)
  • PARI
    my(x='x+O('x^99)); concat(vector(7), Vec(x^7/prod(k=1, 7, 1-x^k))) \\ Altug Alkan, May 17 2018
    

Formula

G.f.: x^7 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)). - Colin Barker, Feb 22 2013
a(n) = A008284(n,7). - Robert A. Russell, May 13 2018
a(n) = A008636(n-7). - R. J. Mathar, Feb 13 2019
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} 1. - Wesley Ivan Hurt, Jun 30 2019

Extensions

More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017