cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026815 Number of partitions of n in which the greatest part is 9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 94, 123, 157, 201, 252, 318, 393, 488, 598, 732, 887, 1076, 1291, 1549, 1845, 2194, 2592, 3060, 3589, 4206, 4904, 5708, 6615, 7657, 8824, 10156, 11648, 13338, 15224, 17354, 19720, 22380
Offset: 0

Views

Author

Keywords

Crossrefs

Essentially same as A008638.
Cf. A008284.

Programs

  • GAP
    List([0..70],n->NrPartitions(n,9)); # Muniru A Asiru, May 17 2018
  • Maple
    part_ZL:=[S,{S=Set(U,card=r),U=Sequence(Z,card>=1)}, unlabeled]: seq(count(subs(r=9,part_ZL),size=m),m=1..50); # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    Table[ Length[ Select[ Partitions[n], First[ # ] == 9 & ]], {n, 1, 60} ]
    CoefficientList[Series[x^9/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8) (1 - x^9)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
    Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 2, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, 1, 1, 2, 1, 1, 1, 0, -1, -1, -1, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, -1, -1, 1}, Append[Table[0,{44}],1],136],35] (* Robert A. Russell, May 17 2018 *)
  • PARI
    x='x+O('x^99); concat(vector(9), Vec(x^9/prod(k=1, 9, 1-x^k))) \\ Altug Alkan, May 17 2018
    

Formula

G.f.: x^9 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)). - Colin Barker, Feb 22 2013
a(n) = A008284(n,9). - Robert A. Russell, May 13 2018

Extensions

a(0)=0 prepended by Seiichi Manyama, Jun 08 2017