A026815 Number of partitions of n in which the greatest part is 9.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 94, 123, 157, 201, 252, 318, 393, 488, 598, 732, 887, 1076, 1291, 1549, 1845, 2194, 2592, 3060, 3589, 4206, 4904, 5708, 6615, 7657, 8824, 10156, 11648, 13338, 15224, 17354, 19720, 22380
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 2, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, 1, 1, 2, 1, 1, 1, 0, -1, -1, -1, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, -1, -1, 1).
Crossrefs
Programs
-
GAP
List([0..70],n->NrPartitions(n,9)); # Muniru A Asiru, May 17 2018
-
Maple
part_ZL:=[S,{S=Set(U,card=r),U=Sequence(Z,card>=1)}, unlabeled]: seq(count(subs(r=9,part_ZL),size=m),m=1..50); # Zerinvary Lajos, Mar 09 2007
-
Mathematica
Table[ Length[ Select[ Partitions[n], First[ # ] == 9 & ]], {n, 1, 60} ] CoefficientList[Series[x^9/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8) (1 - x^9)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *) Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 2, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, 1, 1, 2, 1, 1, 1, 0, -1, -1, -1, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, -1, -1, 1}, Append[Table[0,{44}],1],136],35] (* Robert A. Russell, May 17 2018 *)
-
PARI
x='x+O('x^99); concat(vector(9), Vec(x^9/prod(k=1, 9, 1-x^k))) \\ Altug Alkan, May 17 2018
Formula
G.f.: x^9 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)). - Colin Barker, Feb 22 2013
a(n) = A008284(n,9). - Robert A. Russell, May 13 2018
Extensions
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017