cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A008284 Triangle of partition numbers: T(n,k) = number of partitions of n in which the greatest part is k, 1 <= k <= n. Also number of partitions of n into k positive parts, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 4, 7, 6, 5, 3, 2, 1, 1, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1, 1, 7, 16, 23, 23, 20, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

From Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010: (Start)
A000041(n+1) = 1 + Sum_{r=1..n} Sum_{k=1..min(r,n-r+1)} T(r,k).
T(n, n-k) is also the number of partitions of k in which the greatest part is at most n-k. (End)
From Richard R. Forberg, Dec 26 2014: (Start)
Elements of T(n, k) for n <= 2+3k, equal A000041(n-k) - A000070(n-2k-1), with the assumption A000070(n) = 0 for n < 0.
The diagonal T(2+2k, k), for k > 1 equals A007042, and the diagonal T(3+3k,k), for k >= 1, equals A104384. (End)
T(-n, k) is used as a definition for A380038, which can therefore be seen as an extension of this sequence for negative n. - Friedjof Tellkamp, Jan 18 2025

Examples

			The triangle T(n,k) begins:
   n\k 1  2  3  4  5  6  7  8  9 10 11 12 ...
   1:  1
   2:  1  1
   3:  1  1  1
   4:  1  2  1  1
   5:  1  2  2  1  1
   6:  1  3  3  2  1  1
   7:  1  3  4  3  2  1  1
   8:  1  4  5  5  3  2  1  1
   9:  1  4  7  6  5  3  2  1  1
  10:  1  5  8  9  7  5  3  2  1  1
  11:  1  5 10 11 10  7  5  3  2  1  1
  12:  1  6 12 15 13 11  7  5  3  2  1  1
... Reformatted and extended by _Wolfdieter Lang_, Dec 03 2012; additional extension by _Bob Selcoe_, Jun 09 2013
T(7,3) = 4 because we have [3,3,1], [3,2,2], [3,2,1,1] and [3,1,1,1,1], each having greatest part 3; or [5,1,1], [4,2,1], [3,3,1] and [3,2,2] each having 3 parts.
* Example from formula above: T(10,4) = 9 because T(6,4) + T(6,3) + T(6,2) + T(6,1) = 2 + 3 + 3 + 1 = 9.
* P(n) = P(n-1) + DT(n-1). P(n) = unordered partitions of n. (A000041) DT(n-1) = sum of diagonals beginning at T(n-1,1).
Example P(11) = 56, P(10) = 42, sum DT(10) = 1 + 4 + 5 + 3 + 1 = 14. - _Bob Selcoe_, Jun 09 2013
From _Omar E. Pol_, Nov 19 2019: (Start)
Illustration of initial terms: T(n,k) is also the number of vertical line segments in the k-th column of the n-th diagram, which represents the partitions of n:
.
    1    1 1    1 1 1    1 2 1 1    1 2 2 1 1    1 3 3 2 1 1    1 3 4 3 2 1 1
.
   _|   _| |   _| | |   _| | | |   _| | | | |   _| | | | | |   _| | | | | | |
        _ _|   _ _| |   _ _| | |   _ _| | | |   _ _| | | | |   _ _| | | | | |
               _ _ _|   _ _ _| |   _ _ _| | |   _ _ _| | | |   _ _ _| | | | |
                        _ _|   |   _ _|   | |   _ _|   | | |   _ _|   | | | |
                        _ _ _ _|   _ _ _ _| |   _ _ _ _| | |   _ _ _ _| | | |
                                   _ _ _|   |   _ _ _|   | |   _ _ _|   | | |
                                   _ _ _ _ _|   _ _ _ _ _| |   _ _ _ _ _| | |
                                                _ _|   |   |   _ _|   |   | |
                                                _ _ _ _|   |   _ _ _ _|   | |
                                                _ _ _|     |   _ _ _|     | |
                                                _ _ _ _ _ _|   _ _ _ _ _ _| |
                                                               _ _ _|   |   |
                                                               _ _ _ _ _|   |
                                                               _ _ _ _|     |
                                                               _ _ _ _ _ _ _|
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 94, 96 and 307.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 219.
  • D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions, Addison-Wesley Professional, 2005, pp. 38, 45, 50 [From Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010]
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 400.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 294.

Crossrefs

A000041 is row sums and diagonal.
Partial sums of rows gives A026820.
Read from right to left gives A058398.
Subtriangle of A072233 without row n=0 and column m=0.
Cf. A007042, A104384 which are diagonals with slope -2, -3.

Programs

  • Haskell
    a008284 n k = a008284_tabl !! (n-1) !! (k-1)
    a008284_row n = a008284_tabl !! (n-1)
    a008284_tabl = [1] : f [[1]] where
       f xss = ys : f (ys : xss) where
         ys = (map sum $ zipWith take [1..] xss) ++ [1]
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Maple
    G:=-1+1/product(1-t*x^j,j=1..15): Gser:=simplify(series(G,x=0,17)): for n from 1 to 14 do P[n]:=coeff(Gser,x^n) od: for n from 1 to 14 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Feb 12 2006
    with(combstruct):for n from 0 to 18 do seq(count(Partition(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Mar 30 2009
    T := proc(n,k) option remember; if k < 0 or n < 0 then 0 elif k = 0 then if n = 0 then 1 else 0 fi else T(n - 1, k - 1) + T(n - k, k) fi end: seq(print(seq(T(n, k), k=1..n)),n=1..14); # Peter Luschny, Jul 24 2011
  • Mathematica
    Column[Table[ IntegerPartitions[n, {k}] // Length, {n, 1, 20}, {k, 1, n}], Center] (* Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010 *)
    (*Recurrence closely related to natural numbers and number of divisors of n*)
    Clear[t]; nn = 14; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, n - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0];Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]][[1 ;; 96]] (* Mats Granvik, Jan 01 2015 *)
    Table[SeriesCoefficient[1/QPochhammer[a q, q], {q, 0, n}, {a, 0, k}], {n, 1, 15}, {k, 1, n}] // Column (* Vladimir Reshetnikov, Nov 18 2016 *)
    T[n_, k_] := T[n, k] = If[n>0 && k>0, T[n-1, k-1] + T[n-k, k], Boole[n==0 && k==0]]
    Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* Robert A. Russell, May 12 2018 after Knuth 7.2.1.4 (39) *)
  • PARI
    T(n,k)=#partitions(n-k,k)
    for(n=1,9,for(k=1,n,print1(T(n,k)", "))) \\ Charles R Greathouse IV, Jan 04 2016
    
  • PARI
    A8284=[]; A008284(n,k)={for(n=#A8284+1,n,A8284=concat(A8284,[vector(n,k,if(2*k1,A8284[n-k][k]+A8284[n-1][k-1],1),numbpart(n-k)))]));if(k,A8284[n][k],A8284[n])} \\ Without 2nd argument, return row n. - M. F. Hasler, Sep 26 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A008284_T(n,k):
        if k==n or k==1: return 1
        if k>n: return 0
        return A008284_T(n-1,k-1)+A008284_T(n-k,k) # Chai Wah Wu, Sep 21 2023
  • Sage
    from sage.combinat.partition import number_of_partitions_length
    [[number_of_partitions_length(n, k) for k in (1..n)] for n in (1..12)] # Peter Luschny, Aug 01 2015
    

Formula

T(n, k) = Sum_{i=1..k} T(n-k, i), for 1 <= k <= n-1; T(n, n) = 1 for n >= 1.
Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k > n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. for k-th column: x^k/(Product_{j=1..k} (1-x^j)). - Wolfdieter Lang, Nov 29 2000
G.f.: A(x, y) = Product_{n>=1} 1/(1-x^n)^(P_n(y)/n), where P_n(y) = Sum_{d|n} eulerphi(n/d)*y^d. - Paul D. Hanna, Jul 13 2004
If k >= n/2, T(n,k) = T(2(n-k),n-k) = A000041(n-k). - Franklin T. Adams-Watters, Jan 12 2006 [Relation included by Hans Loeblich, Apr 16 2019, relation extended by Evan Robinson, Jun 30 2021]
G.f.: G(t,x) = -1 + 1/Product_{j>=1} (1-t*x^j). - Emeric Deutsch, Feb 12 2006
A002865(n) = Sum_{k=2..floor((n+2)/2)} T(n-k+1,k-1). - Reinhard Zumkeller, Nov 04 2007
A000700(n) = Sum_{k=1..n} (-1)^(n-k) T(n,k). - Jeremy L. Martin, Jul 06 2013
G.f.: -1 + e^(F(x,z)), where F(x,z) = Sum_{n >= 1} (x*z)^n/(n*(1 - z^n)) is a g.f. for A126988. - Peter Bala, Jan 13 2015
Also, T(n, n-k) = k for k = 1, 2, 3; n >= 2k. T(n, 2) = floor(n/2). T(n, 3) = round(n^2/12). - M. F. Hasler, Sep 26 2017
T(n,k) = [n>0 & k>0] * (T(n-1,k-1) + T(n-k,k)) + [n==0 & k==0]. - Robert A. Russell, May 12 2018 from Knuth 7.2.1.4 (39)
T(n, k) = Sum_{i=0..n-1} T(n-ik-1, k-1) for k >= 1; T(-n, k) = 0 for n > 0; T(n, 0) = [n==0]. - Joshua Swanson (writing for Juexian Li), May 24 2020

A001399 a(n) is the number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also number of unlabeled multigraphs with 3 nodes and n edges.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
Offset: 0

Views

Author

Keywords

Comments

Also number of tripods (trees with exactly 3 leaves) on n vertices. - Eric W. Weisstein, Mar 05 2011
Also number of partitions of n+3 into exactly 3 parts; number of partitions of n in which the greatest part is less than or equal to 3; and the number of nonnegative solutions to b + 2c + 3d = n.
Also a(n) gives number of partitions of n+6 into 3 distinct parts and number of partitions of 2n+9 into 3 distinct and odd parts, e.g., 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3. - Jon Perry, Jan 07 2004
Also bracelets with n+3 beads 3 of which are red (so there are 2 possibilities with 5 beads).
More generally, the number of partitions of n into at most k parts is also the number of partitions of n+k into k positive parts, the number of partitions of n+k in which the greatest part is k, the number of partitions of n in which the greatest part is less than or equal to k, the number of partitions of n+k(k+1)/2 into exactly k distinct positive parts, the number of nonnegative solutions to b + 2c + 3d + ... + kz = n and the number of nonnegative solutions to 2c + 3d + ... + kz <= n. - Henry Bottomley, Apr 17 2001
Also coefficient of q^n in the expansion of (m choose 3)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
From Winston C. Yang (winston(AT)cs.wisc.edu), Apr 30 2002: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) for n > 0 is formed by the folding points (including the initial 1). The spiral begins:
.
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
90 60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / / /
91 61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
.
a(p) is maximal number of hexagons in a polyhex with perimeter at most 2p + 6. (End)
a(n-3) is the number of partitions of n into 3 distinct parts, where 0 is allowed as a part. E.g., at n=9, we can write 8+1+0, 7+2+0, 6+3+0, 4+5+0, 1+2+6, 1+3+5 and 2+3+4, which is a(6)=7. - Jon Perry, Jul 08 2003
a(n) gives number of partitions of n+6 into parts <=3 where each part is used at least once (subtract 6=1+2+3 from n). - Jon Perry, Jul 03 2004
This is also the number of partitions of n+3 into exactly 3 parts (there is a 1-to-1 correspondence between the number of partitions of n+3 in which the greatest part is 3 and the number of partitions of n+3 into exactly three parts). - Graeme McRae, Feb 07 2005
Apply the Riordan array (1/(1-x^3),x) to floor((n+2)/2). - Paul Barry, Apr 16 2005
Also, number of triangles that can be created with odd perimeter 3,5,7,9,11,... with all sides whole numbers. Note that triangles with even perimeter can be generated from the odd ones by increasing each side by 1. E.g., a(1) = 1 because perimeter 3 can make {1,1,1} 1 triangle. a(4) = 3 because perimeter 9 can make {1,4,4} {2,3,4} {3,3,3} 3 possible triangles. - Bruce Love (bruce_love(AT)ofs.edu.sg), Nov 20 2006
Also number of nonnegative solutions of the Diophantine equation x+2*y+3*z=n, cf. Pólya/Szegő reference.
From Vladimir Shevelev, Apr 23 2011: (Start)
Also a(n-3), n >= 3, is the number of non-equivalent necklaces of 3 beads each of them painted by one of n colors.
The sequence {a(n-3), n >= 3} solves the so-called Reis problem about convex k-gons in case k=3 (see our comment to A032279).
a(n-3) (n >= 3) is an essentially unimprovable upper estimate for the number of distinct values of the permanent in (0,1)-circulants of order n with three 1's in every row. (End)
A001399(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w = 2*x+3*y. - Clark Kimberling, Jun 04 2012
Also, for n >= 3, a(n-3) is the number of the distinct triangles in an n-gon, see the Ngaokrajang links. - Kival Ngaokrajang, Mar 16 2013
Also, a(n) is the total number of 5-curve coin patterns (5C4S type: 5 curves covering full 4 coins and symmetry) packing into fountain of coins base (n+3). See illustration in links. - Kival Ngaokrajang, Oct 16 2013
Also a(n) = half the number of minimal zero sequences for Z_n of length 3 [Ponomarenko]. - N. J. A. Sloane, Feb 25 2014
Also, a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of an Octahedral Rotational Energy Surface (cf. Harter & Patterson). - Bradley Klee, Jul 31 2015
Also Molien series for invariants of finite Coxeter groups D_3 and A_3. - N. J. A. Sloane, Jan 10 2016
Number of different distributions of n+6 identical balls in 3 boxes as x,y,z where 0 < x < y < z. - Ece Uslu and Esin Becenen, Jan 11 2016
a(n) is also the number of partitions of 2*n with <= n parts and no part >= 4. The bijection to partitions of n with no part >= 4 is: 1 <-> 2, 2 <-> 1 + 3, 3 <-> 3 + 3 (observing the order of these rules). The <- direction uses the following fact for partitions of 2*n with <= n parts and no part >=4: for each part 1 there is a part 3, and an even number (including 0) of remaining parts 3. - Wolfdieter Lang, May 21 2019
List of the terms in A000567(n>=1), A049450(n>=1), A033428(n>=1), A049451(n>=1), A045944(n>=1), and A003215(n) in nondecreasing order. List of the numbers A056105(n)-1, A056106(n)-1, A056107(n)-1, A056108(n)-1, A056109(n)-1, and A003215(m) with n >= 1 and m >= 0 in nondecreasing order. Numbers of the forms 3n*(n-1)+1, n*(3n-2), n*(3n-1), 3n^2, n*(3n+1), n*(3n+2) with n >= 1 listed in nondecreasing order. Integers m such that lattice points from 1 through m on a hexagonal spiral starting at 1 forms a convex polygon. - Ya-Ping Lu, Jan 24 2024

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 10*x^8 + 12*x^9 + ...
Recall that in a necklace the adjacent beads have distinct colors. Suppose we have n colors with labels 1,...,n. Two colorings of the beads are equivalent if the cyclic sequences of the distances modulo n between labels of adjacent colors have the same period. If n=4, all colorings are equivalent. E.g., for the colorings {1,2,3} and {1,2,4} we have the same period {1,1,2} of distances modulo 4. So, a(n-3)=a(1)=1. If n=5, then we have two such periods {1,1,3} and {1,2,2} modulo 5. Thus a(2)=2. - _Vladimir Shevelev_, Apr 23 2011
a(0) = 1, i.e., {1,2,3} Number of different distributions of 6 identical balls to 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
a(3) = 3, i.e., {1,2,6}, {1,3,5}, {2,3,4} Number of different distributions of 9 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
From _Gus Wiseman_, Apr 15 2019: (Start)
The a(0) = 1 through a(8) = 10 integer partitions of n with at most three parts are the following. The Heinz numbers of these partitions are given by A037144.
  ()  (1)  (2)   (3)    (4)    (5)    (6)    (7)    (8)
           (11)  (21)   (22)   (32)   (33)   (43)   (44)
                 (111)  (31)   (41)   (42)   (52)   (53)
                        (211)  (221)  (51)   (61)   (62)
                               (311)  (222)  (322)  (71)
                                      (321)  (331)  (332)
                                      (411)  (421)  (422)
                                             (511)  (431)
                                                    (521)
                                                    (611)
The a(0) = 1 through a(7) = 8 integer partitions of n + 3 whose greatest part is 3 are the following. The Heinz numbers of these partitions are given by A080193.
  (3)  (31)  (32)   (33)    (322)    (332)     (333)      (3322)
             (311)  (321)   (331)    (3221)    (3222)     (3331)
                    (3111)  (3211)   (3311)    (3321)     (32221)
                            (31111)  (32111)   (32211)    (33211)
                                     (311111)  (33111)    (322111)
                                               (321111)   (331111)
                                               (3111111)  (3211111)
                                                          (31111111)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 5 unlabeled multigraphs with 3 vertices and n edges are the following.
  {}  {12}  {12,12}  {12,12,12}  {12,12,12,12}  {12,12,12,12,12}
            {13,23}  {12,13,23}  {12,13,23,23}  {12,13,13,23,23}
                     {13,23,23}  {13,13,23,23}  {12,13,23,23,23}
                                 {13,23,23,23}  {13,13,23,23,23}
                                                {13,23,23,23,23}
The a(0) = 1 through a(8) = 10 strict integer partitions of n - 6 with three parts are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A007304.
  (321)  (421)  (431)  (432)  (532)  (542)  (543)  (643)   (653)
                (521)  (531)  (541)  (632)  (642)  (652)   (743)
                       (621)  (631)  (641)  (651)  (742)   (752)
                              (721)  (731)  (732)  (751)   (761)
                                     (821)  (741)  (832)   (842)
                                            (831)  (841)   (851)
                                            (921)  (931)   (932)
                                                   (A21)   (941)
                                                           (A31)
                                                           (B21)
The a(0) = 1 through a(8) = 10 integer partitions of n + 3 with three parts are the following. The Heinz numbers of these partitions are given by A014612.
  (111)  (211)  (221)  (222)  (322)  (332)  (333)  (433)  (443)
                (311)  (321)  (331)  (422)  (432)  (442)  (533)
                       (411)  (421)  (431)  (441)  (532)  (542)
                              (511)  (521)  (522)  (541)  (551)
                                     (611)  (531)  (622)  (632)
                                            (621)  (631)  (641)
                                            (711)  (721)  (722)
                                                   (811)  (731)
                                                          (821)
                                                          (911)
The a(0) = 1 through a(8) = 10 integer partitions of n whose greatest part is <= 3 are the following. The Heinz numbers of these partitions are given by A051037.
  ()  (1)  (2)   (3)    (22)    (32)     (33)      (322)      (332)
           (11)  (21)   (31)    (221)    (222)     (331)      (2222)
                 (111)  (211)   (311)    (321)     (2221)     (3221)
                        (1111)  (2111)   (2211)    (3211)     (3311)
                                (11111)  (3111)    (22111)    (22211)
                                         (21111)   (31111)    (32111)
                                         (111111)  (211111)   (221111)
                                                   (1111111)  (311111)
                                                              (2111111)
                                                              (11111111)
The a(0) = 1 through a(6) = 7 strict integer partitions of 2n+9 with 3 parts, all of which are odd, are the following. The Heinz numbers of these partitions are given by A307534.
  (5,3,1)  (7,3,1)  (7,5,1)  (7,5,3)   (9,5,3)   (9,7,3)   (9,7,5)
                    (9,3,1)  (9,5,1)   (9,7,1)   (11,5,3)  (11,7,3)
                             (11,3,1)  (11,5,1)  (11,7,1)  (11,9,1)
                                       (13,3,1)  (13,5,1)  (13,5,3)
                                                 (15,3,1)  (13,7,1)
                                                           (15,5,1)
                                                           (17,3,1)
The a(0) = 1 through a(8) = 10 strict integer partitions of n + 3 with 3 parts where 0 is allowed as a part (A = 10):
  (210)  (310)  (320)  (420)  (430)  (530)  (540)  (640)  (650)
                (410)  (510)  (520)  (620)  (630)  (730)  (740)
                       (321)  (610)  (710)  (720)  (820)  (830)
                              (421)  (431)  (810)  (910)  (920)
                                     (521)  (432)  (532)  (A10)
                                            (531)  (541)  (542)
                                            (621)  (631)  (632)
                                                   (721)  (641)
                                                          (731)
                                                          (821)
The a(0) = 1 through a(7) = 7 integer partitions of n + 6 whose distinct parts are 1, 2, and 3 are the following. The Heinz numbers of these partitions are given by A143207.
  (321)  (3211)  (3221)   (3321)    (32221)    (33221)     (33321)
                 (32111)  (32211)   (33211)    (322211)    (322221)
                          (321111)  (322111)   (332111)    (332211)
                                    (3211111)  (3221111)   (3222111)
                                               (32111111)  (3321111)
                                                           (32211111)
                                                           (321111111)
(End)
Partitions of 2*n with <= n parts and no part >= 4: a(3) = 3 from (2^3), (1,2,3), (3^2) mapping to (1^3), (1,2), (3), the partitions of 3 with no part >= 4, respectively. - _Wolfdieter Lang_, May 21 2019
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter III, Problem 33.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 110, D(n); page 263, #18, P_n^{3}.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
  • R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
  • J. H. van Lint, Combinatorial Seminar Eindhoven, Lecture Notes Math., 382 (1974), see pp. 33-34.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 1, Sect. 1, Problem 25.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001399 = p [1,2,3] where
       p _      0 = 1
       p []     _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 28 2013
    
  • Magma
    I:=[1,1,2,3,4,5]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
    
  • Magma
    [#RestrictedPartitions(n,{1,2,3}): n in [0..62]]; // Marius A. Burtea, Jan 06 2019
    
  • Magma
    [Round((n+3)^2/12): n in [0..70]]; // Marius A. Burtea, Jan 06 2019
    
  • Maple
    A001399 := proc(n)
        round( (n+3)^2/12) ;
    end proc:
    seq(A001399(n),n=0..40) ;
    with(combstruct):ZL4:=[S,{S=Set(Cycle(Z,card<4))}, unlabeled]:seq(count(ZL4,size=n),n=0..61); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=3)},unlabelled]: seq(combstruct[count](B, size=n), n=0..61); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)), {x, 0, 65} ], x ]
    Table[ Length[ IntegerPartitions[n, 3]], {n, 0, 61} ] (* corrected by Jean-François Alcover, Aug 08 2012 *)
    k = 3; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    LinearRecurrence[{1,1,0,-1,-1,1},{1,1,2,3,4,5},70] (* Harvey P. Dale, Jun 21 2012 *)
    a[ n_] := With[{m = Abs[n + 3] - 3}, Length[ IntegerPartitions[ m, 3]]]; (* Michael Somos, Dec 25 2014 *)
    k=3 (* Number of red beads in bracelet problem *);CoefficientList[Series[(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&]],{n,0,30}] (* Gus Wiseman, Apr 15 2019 *)
  • PARI
    {a(n) = round((n + 3)^2 / 12)}; /* Michael Somos, Sep 04 2006 */
    
  • Python
    [round((n+3)**2 / 12) for n in range(0,62)] # Ya-Ping Lu, Jan 24 2024

Formula

G.f.: 1/((1 - x) * (1 - x^2) * (1 - x^3)) = -1/((x+1)*(x^2+x+1)*(x-1)^3); Simon Plouffe in his 1992 dissertation
a(n) = round((n + 3)^2/12). Note that this cannot be of the form (2*i + 1)/2, so ties never arise.
a(n) = A008284(n+3, 3), n >= 0.
a(n) = 1 + a(n-2) + a(n-3) - a(n-5) for all n in Z. - Michael Somos, Sep 04 2006
a(n) = a(-6 - n) for all n in Z. - Michael Somos, Sep 04 2006
a(6*n) = A003215(n), a(6*n + 1) = A000567(n + 1), a(6*n + 2) = A049450(n + 1), a(6*n + 3) = A033428(n + 1), a(6*n + 4) = A049451(n + 1), a(6*n + 5) = A045944(n + 1).
a(n) = a(n-1) + A008615(n+2) = a(n-2) + A008620(n) = a(n-3) + A008619(n) = A001840(n+1) - a(n-1) = A002620(n+2) - A001840(n) = A000601(n) - A000601(n-1). - Henry Bottomley, Apr 17 2001
P(n, 3) = (1/72) * (6*n^2 - 7 - 9*pcr{1, -1}(2, n) + 8*pcr{2, -1, -1}(3, n)) (see Comtet). [Here "pcr" stands for "prime circulator" and it is defined on p. 109 of Comtet, while the formula appears on p. 110. - Petros Hadjicostas, Oct 03 2019]
Let m > 0 and -3 <= p <= 2 be defined by n = 6*m+p-3; then for n > -3, a(n) = 3*m^2 + p*m, and for n = -3, a(n) = 3*m^2 + p*m + 1. - Floor van Lamoen, Jul 23 2001
72*a(n) = 17 + 6*(n+1)*(n+5) + 9*(-1)^n - 8*A061347(n). - Benoit Cloitre, Feb 09 2003
From Jon Perry, Jun 17 2003: (Start)
a(n) = 6*t(floor(n/6)) + (n%6) * (floor(n/6) + 1) + (n mod 6 == 0?1:0), where t(n) = n*(n+1)/2.
a(n) = ceiling(1/12*n^2 + 1/2*n) + (n mod 6 == 0?1:0).
[Here "n%6" means "n mod 6" while "(n mod 6 == 0?1:0)" means "if n mod 6 == 0 then 1, else 0" (as in C).]
(End)
a(n) = Sum_{i=0..floor(n/3)} 1 + floor((n - 3*i)/2). - Jon Perry, Jun 27 2003
a(n) = Sum_{k=0..n} floor((k + 2)/2) * (cos(2*Pi*(n - k)/3 + Pi/3)/3 + sqrt(3) * sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3). - Paul Barry, Apr 16 2005
(m choose 3)_q = (q^m-1) * (q^(m-1) - 1) * (q^(m-2) - 1)/((q^3 - 1) * (q^2 - 1) * (q - 1)).
a(n) = Sum_{k=0..floor(n/2)} floor((3 + n - 2*k)/3). - Paul Barry, Nov 11 2003
A117220(n) = a(A003586(n)). - Reinhard Zumkeller, Mar 04 2006
a(n) = 3 * Sum_{i=2..n+1} floor(i/2) - floor(i/3). - Thomas Wieder, Feb 11 2007
Identical to the number of points inside or on the boundary of the integer grid of {I, J}, bounded by the three straight lines I = 0, I - J = 0 and I + 2J = n. - Jonathan Vos Post, Jul 03 2007
a(n) = A026820(n,3) for n > 2. - Reinhard Zumkeller, Jan 21 2010
Euler transform of length 3 sequence [ 1, 1, 1]. - Michael Somos, Feb 25 2012
a(n) = A005044(2*n + 3) = A005044(2*n + 6). - Michael Somos, Feb 25 2012
a(n) = A000212(n+3) - A002620(n+3). - Richard R. Forberg, Dec 08 2013
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6). - David Neil McGrath, Feb 14 2015
a(n) = floor((n^2+3)/12) + floor((n+2)/2). - Giacomo Guglieri, Apr 02 2019
From Devansh Singh, May 28 2020: (Start)
Let p(n, 3) be the number of 3-part integer partitions in which every part is > 0.
Then for n >= 3, p(n, 3) is equal to:
(n^2 - 1)/12 when n is odd and 3 does not divide n.
(n^2 + 3)/12 when n is odd and 3 divides n.
(n^2 - 4)/12 when n is even and 3 does not divide n.
(n^2)/12 when n is even and 3 divides n.
For n >= 3, p(n, 3) = a(n-3). (End)
a(n) = floor(((n+3)^2 + 4)/12). - Vladimír Modrák, Zuzana Soltysova, Dec 08 2020
Sum_{n>=0} 1/a(n) = 15/4 - Pi/(2*sqrt(3)) + Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3). - Amiram Eldar, Sep 29 2022
E.g.f.: exp(-x)*(9 + exp(2*x)*(47 + 42*x + 6*x^2) + 16*exp(x/2)*cos(sqrt(3)*x/2))/72. - Stefano Spezia, Mar 05 2023
a(6n) = 1+6*A000217(n); Sum_{i=1..n} a(6*i) = A000578(n+1). - David García Herrero, May 05 2024

Extensions

Name edited by Gus Wiseman, Apr 15 2019

A026810 Number of partitions of n in which the greatest part is 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169, 185, 206, 225, 249, 270, 297, 321, 351, 378, 411, 441, 478, 511, 551, 588, 632, 672, 720, 764, 816, 864, 920, 972, 1033, 1089, 1154, 1215, 1285, 1350
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n into exactly 4 parts.
Also the number of weighted cubic graphs on 4 nodes (=the tetrahedron) with weight n. - R. J. Mathar, Nov 03 2018
From Gus Wiseman, Jun 27 2021: (Start)
Also the number of strict integer partitions of 2n with alternating sum 4, or (by conjugation) partitions of 2n covering an initial interval of positive integers with exactly 4 odd parts. The strict partitions with alternating sum 4 are:
(4) (5,1) (6,2) (7,3) (8,4) (9,5) (10,6)
(5,2,1) (5,3,2) (5,4,3) (6,5,3) (7,6,3)
(6,3,1) (6,4,2) (7,5,2) (8,6,2)
(7,4,1) (8,5,1) (9,6,1)
(6,3,2,1) (6,4,3,1) (6,5,4,1)
(7,4,2,1) (7,4,3,2)
(7,5,3,1)
(8,5,2,1)
(6,4,3,2,1)
(End)

Examples

			From _Gus Wiseman_, Jun 27 2021: (Start)
The a(4) = 1 through a(10) = 9 partitions of length 4:
  (1111)  (2111)  (2211)  (2221)  (2222)  (3222)  (3322)
                  (3111)  (3211)  (3221)  (3321)  (3331)
                          (4111)  (3311)  (4221)  (4222)
                                  (4211)  (4311)  (4321)
                                  (5111)  (5211)  (4411)
                                          (6111)  (5221)
                                                  (5311)
                                                  (6211)
                                                  (7111)
(End)
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
  • D. E. Knuth, The Art of Computer Programming, vol. 4,fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.

Crossrefs

Cf. A001400, A026811, A026812, A026813, A026814, A026815, A026816, A069905 (3 positive parts), A002621 (partial sums), A005044 (first differences).
A non-strict version is A000710 or A088218.
This is column k = 2 of A152146.
A reverse version is A343941.

Programs

  • Magma
    [Round((n^3+3*n^2-9*n*(n mod 2))/144): n in [0..60]]; // Vincenzo Librandi, Oct 14 2015
  • Maple
    A049347 := proc(n)
            op(1+(n mod 3),[1,-1,0]) ;
    end proc:
    A056594 := proc(n)
            op(1+(n mod 4),[1,0,-1,0]) ;
    end proc:
    A026810 := proc(n)
            1/288*(n+1)*(2*n^2+4*n-13+9*(-1)^n) ;
            %-A049347(n)/9 ;
            %+A056594(n)/8 ;
    end proc: # R. J. Mathar, Jul 03 2012
  • Mathematica
    Table[Count[IntegerPartitions[n], {4, _}], {n, 0, 60}]
    LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 1, 1, 2, 3, 5, 6}, 60] (* Vincenzo Librandi, Oct 14 2015 *)
    Table[Length[IntegerPartitions[n, {4}]], {n, 0, 60}] (* Eric Rowland, Mar 02 2017 *)
    CoefficientList[Series[x^4/Product[1 - x^k, {k, 1, 4}], {x, 0, 60}], x] (* Robert A. Russell, May 13 2018 *)
  • PARI
    for(n=0, 60, print(n, " ", round((n^3 + 3*n^2 -9*n*(n % 2))/144))); \\ Washington Bomfim, Jul 03 2012
    
  • PARI
    x='x+O('x^60); concat([0, 0, 0, 0], Vec(x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)))) \\ Altug Alkan, Oct 14 2015
    
  • PARI
    vector(60, n, n--; (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 + real(I^n)/8 - ((n+2)%3-1)/9) \\ Altug Alkan, Oct 26 2015
    
  • PARI
    print1(0,", "); for(n=1,60,j=0;forpart(v=n,j++,,[4,4]); print1(j,", ")) \\ Hugo Pfoertner, Oct 01 2018
    

Formula

G.f.: x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) = x^4/((1-x)^4*(1+x)^2*(1+x+x^2)*(1+x^2)).
a(n+4) = A001400(n). - Michael Somos, Apr 07 2012
a(n) = round( (n^3 + 3*n^2 -9*n*(n mod 2))/144 ). - Washington Bomfim, Jan 06 2021 and Jul 03 2012
a(n) = (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 -A049347(n)/9 +A056594(n)/8. - R. J. Mathar, Jul 03 2012
From Gregory L. Simay, Oct 13 2015: (Start)
a(n) = (n^3 + 3*n^2 - 9*n)/144 + a(m) - (m^3 + 3*m^2 - 9*m)/144 if n = 12k + m and m is odd. For example, a(23) = a(12*1 + 11) = (23^3 + 3*23^2 - 9*23)/144 + a(11) - (11^3 + 3*11^2 - 9*11)/144 = 94.
a(n) = (n^3 + 3*n^2)/144 + a(m) - (m^3 + 3*m^2)/144 if n = 12k + m and m is even. For example, a(22) = a(12*1 + 10) = (22^3 + 3*22^2)/144 + a(10) - (10^3 + 3*10^2)/144 = 84. (End)
a(n) = A008284(n,4). - Robert A. Russell, May 13 2018
From Gregory L. Simay, Jul 28 2019: (Start)
a(2n+1) = a(2n) + a(n+1) - a(n-3) and
a(2n) = a(2n-1) + a(n+2) - a(n-2). (End)

A026811 Number of partitions of n in which the greatest part is 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 141, 164, 192, 221, 255, 291, 333, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 1342, 1469, 1602, 1747, 1898, 2062, 2233, 2418, 2611, 2818, 3034, 3266, 3507, 3765
Offset: 0

Views

Author

Keywords

Comments

Essentially same as A001401: five zeros followed by A001401.
Also number of partitions of n into exactly 5 parts.

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4, fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.

Crossrefs

Cf. A026810, A026812, A026813, A026814, A026815, A026816, A002622 (partial sums), A008667 (first differences).

Programs

  • GAP
    List([0..70],n->NrPartitions(n,5)); # Muniru A Asiru, May 17 2018
  • Mathematica
    Table[Count[IntegerPartitions[n], {5, _}], {n, 0, 55}] (* corrected by Harvey P. Dale, Oct 24 2011 *)
    Table[Length[IntegerPartitions[n, {5}]], {n, 0, 55}] (* Eric Rowland, Mar 02 2017 *)
    CoefficientList[Series[x^5/Product[1 - x^k, {k, 1, 5}], {x, 0, 65}], x] (* Robert A. Russell, May 13 2018 *)
    Drop[LinearRecurrence[{1,1,0,0,-1,-1,-1,1,1,1,0,0,-1,-1,1}, Append[Table[0,{14}],1],110],9] (* Robert A. Russell, May 17 2018 *)
  • PARI
    a(n)=round((n^4+10*(n^3+n^2)-75*n-45*(-1)^n*n)/2880);
    for(n=0,10000,print(n," ",a(n))); /* b-file format */
    /* Washington Bomfim, Jul 03 2012 */
    
  • PARI
    x='x+O('x^99); concat(vector(5), Vec(x^5/prod(k=1, 5, 1-x^k))) \\ Altug Alkan, May 17 2018
    

Formula

a(n) = round( ((n^4+10*(n^3+n^2)-75*n -45*n*(-1)^n)) / 2880 ). - Washington Bomfim, Jul 03 2012
G.f.: x^5/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)). - Joerg Arndt, Jul 04 2012
a(n) = A008284(n,5). - Robert A. Russell, May 13 2018
From Gregory L. Simay, Jul 28 2019: (Start)
a(2n) = a(2n-1) + a(n+1) + a(n) - a(n-3) - a(n-4);
a(2n+1) = a(2n) + a(n+3) - a(n-5). (End)
From R. J. Mathar, Jun 23 2021: (Start)
a(n) - a(n-5) = A001400(n-5).
a(n) - a(n-4) = A008669(n-5).
a(n) - a(n-3) = A029007(n-5).
a(n) - a(n-2) = A029032(n-5).
a(n) = +a(n-1) +a(n-2) -a(n-5) -a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) -a(n-13) -a(n-14) +a(n-15). (End)

Extensions

More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 inserted by Joerg Arndt, Jul 04 2012

A026816 Number of partitions of n in which the greatest part is 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 75, 97, 128, 164, 212, 267, 340, 423, 530, 653, 807, 984, 1204, 1455, 1761, 2112, 2534, 3015, 3590, 4242, 5013, 5888, 6912, 8070, 9418, 10936, 12690, 14663, 16928, 19466
Offset: 0

Views

Author

Keywords

Crossrefs

Essentially same as A008639.

Programs

  • GAP
    List([0..70],n->NrPartitions(n,10)); # Muniru A Asiru, May 17 2018
    
  • Magma
    [#Partitions(k, 10): k in [1..51]]; // Marius A. Burtea, Jul 13 2019
  • Mathematica
    Table[ Length[ Select[ Partitions[n], First[ # ] == 10 & ]], {n, 1, 60} ]
    CoefficientList[Series[x^10/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8) (1 - x^9) (1 - x^10)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
  • PARI
    concat(vector(9),Vec(1/prod(k=1,10,1-x^k)+O(x^90))) \\ Charles R Greathouse IV, May 06 2015
    

Formula

G.f.: x^10 / (Product_{k=1..10} 1-x^k ). - Colin Barker, Feb 22 2013
a(n) = A008284(n,10). - Robert A. Russell, May 13 2018
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} 1. - Wesley Ivan Hurt, Jul 13 2019

Extensions

a(0)=0 prepended by Seiichi Manyama, Jun 08 2017

A026813 Number of partitions of n in which the greatest part is 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618, 733, 860, 1009, 1175, 1367, 1579, 1824, 2093, 2400, 2738, 3120, 3539, 4011, 4526, 5102, 5731, 6430, 7190, 8033, 8946, 9953, 11044, 12241
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..70],n->NrPartitions(n,7)); # Muniru A Asiru, May 17 2018
    
  • Magma
    [#Partitions(n,7): n in [0..53]]; // Marius A. Burtea, Jul 01 2019
  • Mathematica
    Table[ Length[ Select[ Partitions[n], First[ # ] == 7 & ]], {n, 1, 60} ]
    CoefficientList[Series[x^7/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
    Drop[LinearRecurrence[{1,1,0,0,-1,0,-1,-1,0,1,1,2,0,0,0,-2,-1,-1,0,1,1,0,1,0,0,-1,-1,1}, Append[Table[0,{27}],1],121],20] (* Robert A. Russell, May 17 2018 *)
  • PARI
    my(x='x+O('x^99)); concat(vector(7), Vec(x^7/prod(k=1, 7, 1-x^k))) \\ Altug Alkan, May 17 2018
    

Formula

G.f.: x^7 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)). - Colin Barker, Feb 22 2013
a(n) = A008284(n,7). - Robert A. Russell, May 13 2018
a(n) = A008636(n-7). - R. J. Mathar, Feb 13 2019
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} 1. - Wesley Ivan Hurt, Jun 30 2019

Extensions

More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017

A026814 Number of partitions of n in which the greatest part is 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 52, 70, 89, 116, 146, 186, 230, 288, 352, 434, 525, 638, 764, 919, 1090, 1297, 1527, 1801, 2104, 2462, 2857, 3319, 3828, 4417, 5066, 5812, 6630, 7564, 8588, 9749, 11018, 12450, 14012, 15765, 17674
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..70],n->NrPartitions(n,8)); # Muniru A Asiru, May 17 2018
  • Mathematica
    CoefficientList[Series[x^8/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
    Table[Count[IntegerPartitions[n],?(Max[#]==8&)],{n,0,55}] (* _Harvey P. Dale, Dec 04 2022 *)
  • PARI
    x='x+O('x^99); concat(vector(8), Vec(x^8/prod(k=1, 8, 1-x^k))) \\ Altug Alkan, May 17 2018
    

Formula

G.f.: x^8 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)). [Colin Barker, Feb 22 2013]
a(n) = A008284(n,8). - Robert A. Russell, May 13 2018
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} 1. - Wesley Ivan Hurt, Jul 04 2019

Extensions

More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017
Two inoperative Mathematica programs deleted by Harvey P. Dale, Dec 04 2022

A026812 Number of partitions of n in which the greatest part is 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282, 331, 391, 454, 532, 612, 709, 811, 931, 1057, 1206, 1360, 1540, 1729, 1945, 2172, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n into 6 parts. - Washington Bomfim, Jan 15 2021

Crossrefs

Essentially same as A001402.

Programs

  • GAP
    List([0..70],n->NrPartitions(n,6)); # Muniru A Asiru, May 17 2018
  • Mathematica
    Table[ Length[ Select[ Partitions[n], First[ # ] == 6 & ]], {n, 1, 60} ]
    CoefficientList[Series[x^6/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
    Drop[LinearRecurrence[{1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1}, Append[Table[0,{20}],1],115],14] (* Robert A. Russell, May 17 2018 *)
  • PARI
    my(x='x+O('x^99)); concat(vector(6), Vec(x^6/prod(k=1, 6, 1-x^k))) \\ Altug Alkan, May 17 2018
    
  • PARI
    a = vector(60,n,n--; round((n+11)*((6*n^4+249*n^3+2071*n^2 -4931*n+40621) /518400 +n\2*(n+10)/192+((n+1)\3+n\3*2)/54))); a = concat([0,0,0,0,0,0], a) \\ Washington Bomfim, Jan 16 2021
    

Formula

G.f.: x^6 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)). - Colin Barker, Dec 20 2012
a(n) = A008284(n,6). - Robert A. Russell, May 13 2018
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} 1. - Wesley Ivan Hurt, Jun 29 2019
a(n) = A001402(n) - A001401(n). a(n) = A001402(n-6). - Washington Bomfim, Jan 15 2021
a(n) = round((1/86400)*n^5 + (1/3840)*n^4 + (19/12960)*n^3 - (n mod 2)*(1/384)*n^2 + (1/17280)*b(n mod 6)*n), where b(0)=96, b(1)=b(5)=-629, b(2)=b(4)=-224, and b(3)=-309. - Washington Bomfim and Jon E. Schoenfield, Jan 16 2021

Extensions

More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017

A288255 Number of nonagons that can be formed with perimeter n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 50, 69, 87, 116, 145, 189, 233, 299, 363, 458, 553, 687, 820, 1009, 1195, 1453, 1709, 2058, 2404, 2872, 3331, 3948, 4557, 5361, 6152, 7194, 8215, 9547, 10853, 12543, 14199, 16329, 18407, 21067, 23666, 26964, 30179, 34248, 38207
Offset: 9

Views

Author

Seiichi Manyama, Jun 07 2017

Keywords

Comments

Number of (a1, a2, ... , a9) where 1 <= a1 <= ... <= a9 and a1 + a2 + ... + a8 > a9.

Crossrefs

Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), this sequence (k=9), A288256 (k=10).

Formula

G.f.: x^9/((1-x)*(1-x^2)* ... *(1-x^9)) - x^16/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^16)).
a(2*n+16) = A026815(2*n+16) - A288343(n), a(2*n+17) = A026815(2*n+17) - A288343(n) for n >= 0. - Seiichi Manyama, Jun 08 2017

A060028 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 9.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 10, 11, 16, 16, 22, 23, 29, 29, 36, 34, 41, 37, 40, 32, 32, 14, 6, -22, -44, -90, -130, -203, -270, -378, -487, -642, -803, -1027, -1260, -1568, -1899, -2320, -2774, -3342, -3955, -4706, -5526, -6507, -7579, -8854, -10243, -11872, -13656
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+8 into 8 parts and the number of partitions of n+8 into 9 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), this sequence (N=9), A060029 (N=10).

Programs

  • Mathematica
    With[{den=Times@@Table[(1-x^n),{n,9}]},CoefficientList[Series[(1-x-x^9)/ den,{x,0,60}],x]] (* Harvey P. Dale, May 22 2012 *)

Formula

a(n) = A026814(n+8) - A026815(n+8). - Wesley Ivan Hurt, Apr 16 2019
Showing 1-10 of 24 results. Next