A026816 Number of partitions of n in which the greatest part is 10.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 75, 97, 128, 164, 212, 267, 340, 423, 530, 653, 807, 984, 1204, 1455, 1761, 2112, 2534, 3015, 3590, 4242, 5013, 5888, 6912, 8070, 9418, 10936, 12690, 14663, 16928, 19466
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, -1, 1, 1, 1, 2, 0, 0, -1, -1, -1, -1, -3, 0, 0, 1, 1, 2, 2, 1, 1, 0, 0, -3, -1, -1, -1, -1, 0, 0, 2, 1, 1, 1, -1, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, -1).
Programs
-
GAP
List([0..70],n->NrPartitions(n,10)); # Muniru A Asiru, May 17 2018
-
Magma
[#Partitions(k, 10): k in [1..51]]; // Marius A. Burtea, Jul 13 2019
-
Mathematica
Table[ Length[ Select[ Partitions[n], First[ # ] == 10 & ]], {n, 1, 60} ] CoefficientList[Series[x^10/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8) (1 - x^9) (1 - x^10)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
-
PARI
concat(vector(9),Vec(1/prod(k=1,10,1-x^k)+O(x^90))) \\ Charles R Greathouse IV, May 06 2015
Formula
G.f.: x^10 / (Product_{k=1..10} 1-x^k ). - Colin Barker, Feb 22 2013
a(n) = A008284(n,10). - Robert A. Russell, May 13 2018
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} 1. - Wesley Ivan Hurt, Jul 13 2019
Extensions
a(0)=0 prepended by Seiichi Manyama, Jun 08 2017