cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A175788 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of n that do not contain k as a part.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 2, 2, 2, 7, 1, 1, 2, 2, 3, 2, 11, 1, 1, 2, 3, 4, 4, 4, 15, 1, 1, 2, 3, 4, 5, 6, 4, 22, 1, 1, 2, 3, 5, 6, 8, 8, 7, 30, 1, 1, 2, 3, 5, 6, 9, 10, 11, 8, 42, 1, 1, 2, 3, 5, 7, 10, 12, 15, 15, 12, 56
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2010

Keywords

Examples

			Square array A(n,k) begins:
  1, 1, 1, 1, 1, 1, ...
  1, 0, 1, 1, 1, 1, ...
  2, 1, 1, 2, 2, 2, ...
  3, 1, 2, 2, 3, 3, ...
  5, 2, 3, 4, 4, 5, ...
  7, 2, 4, 5, 6, 6, ...
		

Crossrefs

Rows n=0-1 give: A000012, A060576.
Main diagonal gives A000065 (for n>0).

Programs

  • Maple
    A41:= n-> `if`(n<0, 0, combinat[numbpart](n)):
    A:= (n,k)-> A41(n) -`if`(k>0, A41(n-k), 0):
    seq(seq(A(n,d-n), n=0..d), d=0..11);
  • Mathematica
    A41[n_] := If[n<0, 0, PartitionsP[n]]; A[n_, k_] := A41[n]-If[k>0, A41[n-k], 0]; Table[A[n, d-n], {d, 0, 11}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)

Formula

G.f. of column 0: Product_{m>0} 1/(1-x^m).
G.f. of column k>0: (1-x^k) * Product_{m>0} 1/(1-x^m).
A(n,0) = A000041(n); A(n,k) = A000041(n) - A000041(n-k) for k>0.
For fixed k>0, A(n,k) ~ k*Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + k*Pi/(2*sqrt(6)))/sqrt(n) + (1/8 + 3*k/2 + 9/(2*Pi^2) + Pi^2/6912 + k*Pi^2/288 + k^2*Pi^2/36)/n). - Vaclav Kotesovec, Nov 04 2016

A343668 Number of partitions of an n-set without blocks of size 8.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4139, 21138, 115885, 677745, 4206172, 27577513, 190289713, 1377315050, 10426866782, 82350895629, 677003941219, 5781485704892, 51193839084907, 469251258854001, 4445769329586348, 43475305461354931, 438270620701587657, 4549243731200717053
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j=8, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 25 2021
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^8/8!], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(-1)^k BellB[n - 8 k]/((n - 8 k)! k! (8!)^k), {k, 0, Floor[n/8]}], {n, 0, 25}]
    a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 8, 0, Binomial[n - 1, k - 1]  a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: exp(exp(x) - 1 - x^8/8!).
a(n) = n! * Sum_{k=0..floor(n/8)} (-1)^k * Bell(n-8*k) / ((n-8*k)! * k! * (8!)^k).

A173304 Triangle generated from the array in A173302 (partition numbers starting new rows at n = 1, 3, 7, 15, ...).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 4, 3, 4, 6, 4, 7, 8, 6, 1, 8, 11, 9, 2, 12, 15, 12, 3, 14, 20, 17, 5, 21, 26, 23, 7, 24, 35, 31, 11, 34, 45, 41, 15, 41, 58, 55, 21, 1, 55, 75, 71, 29, 1, 66, 96, 93, 40, 2, 88, 121, 120, 53, 3, 105, 154, 154, 72, 5, 137, 193, 196, 94, 7
Offset: 0

Views

Author

Gary W. Adamson, Feb 15 2010

Keywords

Comments

Row sums = A000041, the partition numbers.

Examples

			The finite difference array starts:
  1, 1, 1, 1, 2, 2, 4, 4, 7,  8, 12, 14, 21, 24, ...; = A002865 (a variant)
        1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 35, ...; = A027336
           1, 1, 2, 3, 4, 6,  9, 12, 17, 23, 31, ...; = A017338
                       1, 1,  2,  3,  5,  7, 11, ...; = A027342
  ...
Last, columns of the array become rows of triangle A173304:
    1;
    1;
    1,   1;
    2,   2,   1;
    2,   3,   2;
    4,   4,   3;
    4,   6,   4,  1;
    7,   8,   6,  1;
    8,  11,   9,  2;
   12,  15,  12,  3;
   14,  20,  17,  5;
   21,  26,  23,  7;
   24,  35,  31, 11;
   34,  45,  41, 15;
   41,  58,  55, 21, 1;
   55,  75,  71, 29, 1;
   66,  96,  93, 40, 2;
   88, 121, 120, 53, 3;
  105, 154, 154, 72, 5;
  137, 193, 196, 94, 7;
  ...
		

Crossrefs

Formula

The generating array is in A173302.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, ...
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, ...
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ...
1, 1, 2, 3, 5, 7, 11, 15, 22, ...
1, ...
...
Take finite differences from the bottom, creating a new array in which rows are A002865 (a slight variant), A027336, A027338, A027342, ...; i.e., the numbers of partitions of n that do not contain (1, 2, 4, 8, ...) as a part.
Showing 1-3 of 3 results.