A027434 a(1) = 2; then defined by property that a(n) = smallest number >= a(n-1) such that successive runs have lengths 1,1,2,2,3,3,4,4.
2, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 1
References
- Sam Speed, An integer sequence (preprint).
Links
- William A. Tedeschi, Table of n, a(n) for n = 1..10000
- A. Casteigts, M. Raffinot and J. Schoeters, VectorTSP: A Traveling Salesperson Problem with Racetrack-like acceleration constraints, Lemma 7, arXiv:2006.03666 [cs.DS], 2020-2021.
Programs
-
Haskell
a027434 = (+ 1) . a000196 . (subtract 3) . (* 4) a027434_list = 2 : concat (map (\x -> replicate (x `div` 2) x) [3..]) -- Reinhard Zumkeller, Mar 23 2013, Nov 22 2011
-
Maple
A027434:=n->ceil(2*sqrt(n)); seq(A027434(n), n=1..100); # Wesley Ivan Hurt, Mar 01 2014
-
Mathematica
Table[Ceiling[2*Sqrt[n]], {n, 100}] (* Wesley Ivan Hurt, Mar 01 2014 *) Sort[Flatten[Table[#,{#[[1]]/2}]]]&/@Partition[Range[2,20],2]//Flatten (* Harvey P. Dale, Sep 05 2019 *) lst = {}; Do[If[IntegerQ[d=Sqrt[b^2-4 c]], AppendTo[lst, b]], {b, 1, 20}, {c, 1, b^2/4}]; lst (* Frank M Jackson, Jan 21 2024 *)
-
PARI
a(n)=sqrtint(4*n-3)+1 \\ Charles R Greathouse IV, Feb 07 2012
-
Python
from math import isqrt def A027434(n): return 1+isqrt((n<<2)-1) # Chai Wah Wu, Jul 27 2022
Formula
a(n) = 1 + floor( sqrt(4*n-3) ) = 1+A000267(n-1).
a(n) = A049068(n) - n.
a(n) = A027709(n)/2. - Tanya Khovanova, Mar 04 2008
a(n) = ceiling(2*sqrt(n)). [Mircea Merca, Feb 07 2012]
a(n) = floor(1+sqrt(n)+sqrt(n-1)). - Alisa Ediger, Jul 20 2016
G.f.: x*(1 + x^(-1/4)*theta_2(x) + theta_3(x))/(2*(1 - x)), where theta_k(x) is the Jacobi theta function. - Ilya Gutkovskiy, Jul 20 2016
a(n) = 1 + floor(sqrt(4*n-1)). - Chai Wah Wu, Jul 27 2022
Extensions
More terms from Courtney Clipp (cclipp(AT)ashland.edu), Dec 08 2004
Comments