A027459 Numerator of Sum_{k=1..n} H(k)/k, where H(k) is k-th harmonic number.
1, 7, 85, 415, 12019, 13489, 726301, 3144919, 30300391, 32160403, 4102360483, 4301068993, 758647585777, 112686856171, 3336876977, 96568406789, 28776062218037, 29608882035581, 1568274265798307, 11256448518043769
Offset: 1
Keywords
Examples
(a[ i,j ])^3 = MATRIX([[1, 0, 0, 0, 0], [7/8, 1/8, 0, 0, 0], [85/108, 19/108, 1/27, 0, 0], [415/576, 115/576, 37/576, 1/64, 0], [12019/18000, 3799/18000, 1489/18000, 61/2000, 1/125]]), n = 5.
Links
- Alexander Adamchuk, Table of n, a(n) for n = 1..30
- Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
- Eric Weisstein's World of Mathematics, Harmonic Number
Programs
-
Magma
[Numerator(&+[HarmonicNumber(k)/k:k in [1..n]]):n in [1..20]]; // Marius A. Burtea, Nov 05 2019
-
Mathematica
Table[Numerator[Sum[Sum[1/i,{i,1,k}]/k,{k,1,n}]],{n,1,30}] (* Alexander Adamchuk, Jan 02 2007 *) With[{nn=20},Accumulate[HarmonicNumber[Range[nn]]/Range[nn]]]//Numerator (* Harvey P. Dale, Feb 26 2023 *)
Formula
Numerators of sequence a(1, n) in (a(i, j))^3 where a(i, j) = 1/i if j <= i, 0 if j > i.
Numerators of (Wolstenholme(n, 1)^2 + Wolstenholme(n, 2))/(2*n)= ((gamma+Psi(n+1))^2 + Pi^2/6 - Psi(1, n+1))/(2*n), where Wolstenholme(n, m) = Sum_{i=1..n} 1/i^m. - Vladeta Jovovic, Aug 09 2002
a(n) = numerator(Sum_{k=1..n} ((Sum_{i=1..k} 1/i)/k)). - Alexander Adamchuk, Jan 02 2007
Extensions
Corrected by Vladeta Jovovic, Aug 09 2002
Comments