A027465 Cube of lower triangular normalized binomial matrix.
1, 3, 1, 9, 6, 1, 27, 27, 9, 1, 81, 108, 54, 12, 1, 243, 405, 270, 90, 15, 1, 729, 1458, 1215, 540, 135, 18, 1, 2187, 5103, 5103, 2835, 945, 189, 21, 1, 6561, 17496, 20412, 13608, 5670, 1512, 252, 24, 1, 19683, 59049, 78732, 61236, 30618, 10206, 2268
Offset: 0
Examples
Example: n = 3 offers 2^3 = 8 different binary vectors (0,0,0), (0,0,1), ..., (1,1,0), (1,1,1). a(3,2) = 9 of the 2^4 = 64 pairs have overlap k = 2: (0,1,1)*(0,1,1) = (1,0,1)*(1,0,1) = (1,1,0)*(1,1,0) = (1,1,1)*(1,1,0) = (1,1,1)*(1,0,1) = (1,1,1)*(0,1,1) = (0,1,1)*(1,1,1) = (1,0,1)*(1,1,1) = (1,1,0)*(1,1,1) = 2. For example, T(2,1)=6 since there are 6 subsets of {1,2,3,4} that have exactly 1 symmetric pair, namely, {1,4}, {2,3}, {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4}. The present sequence formatted as a triangular array: 1 3 1 9 6 1 27 27 9 1 81 108 54 12 1 243 405 270 90 15 1 729 1458 1215 540 135 18 1 2187 5103 5103 2835 945 189 21 1 6561 17496 20412 13608 5670 1512 252 24 1 ... A013610 formatted as a triangular array: 1 1 3 1 6 9 1 9 27 27 1 12 54 108 81 1 15 90 270 405 243 1 18 135 540 1215 1458 729 1 21 189 945 2835 5103 5103 2187 1 24 252 1512 5670 13608 20412 17496 6561 ... A099097 formatted as a square array: 1 0 0 0 0 0 0 0 0 0 0 ... 3 1 0 0 0 0 0 0 0 0 ... 9 6 1 0 0 0 0 0 0 ... 27 27 9 1 0 0 0 0 ... 81 108 54 12 1 0 0 ... 243 405 270 90 15 1 ... 729 1458 1215 540 135 ... 2187 5103 5103 2835 ... 6561 17496 20412 ... 19683 59049 ... 59049 ...
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
Crossrefs
Programs
-
Haskell
a027465 n k = a027465_tabl !! n !! k a027465_row n = a027465_tabl !! n a027465_tabl = iterate (\row -> zipWith (+) (map (* 3) (row ++ [0])) (map (* 1) ([0] ++ row))) [1] -- Reinhard Zumkeller, May 26 2013
-
Maple
for i from 0 to 12 do seq(binomial(i, j)*3^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Nov 25 2007 # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left. PMatrix(10, n -> 3^(n-1)); # Peter Luschny, Oct 09 2022
-
Mathematica
t[n_, k_] := Binomial[n, k]*3^(n-k); Table[t[n, n-k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 19 2012 *)
-
PARI
{T(n, k) = polcoeff( (3 + x)^n, k)}; /* Michael Somos, Feb 14 2002 */
Formula
Numerators of lower triangle of (b^2)[ i, j ] where b[ i, j ] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i.
Triangle whose (i, j)-th entry is binomial(i, j)*3^(i-j).
a(n, m) = 4^(n-1)*Sum_{j=m..n} b(n, j)*b(j, m) = 3^(n-m)*binomial(n-1, m-1), n >= m >= 1; a(n, m) := 0, n < m. G.f. for m-th column: (x/(1-3*x))^m (m-fold convolution of A000244, powers of 3). - Wolfdieter Lang, Feb 2006
G.f.: 1 / (1 - x(3+y)).
a(n,k) = 3*a(n-1,k) + a(n-1,k-1) - R. J. Mathar, Mar 17 2006
From the formalism of A133314, the e.g.f. for the row polynomials of A027465 is exp(x*t)*exp(3x). The e.g.f. for the row polynomials of the inverse matrix is exp(x*t)*exp(-3x). p iterates of the matrix give the matrix with e.g.f. exp(x*t)*exp(p*3x). The results generalize for 3 replaced by any number. - Tom Copeland, Aug 18 2008
T(n,k) = A164942(n,k)*(-1)^k. - Philippe Deléham, Oct 09 2011
Let P and P^T be the Pascal matrix and its transpose and H = P^3 = A027465. Then from the formalism of A132440 and A218272,
exp[x*z/(1-3z)]/(1-3z) = exp(3z D_z z) e^(x*z)= exp(3D_x x D_x) e^(z*x)
= (1 z z^2 z^3 ...) H (1 x x^2/2! x^3/3! ...)^T
= (1 x x^2/2! x^3/3! ...) H^T (1 z z^2 z^3 ...)^T = Sum_{n>=0} (3z)^n L_n(-x/3), where D is the derivative operator and L_n(x) are the regular (not normalized) Laguerre polynomials. - Tom Copeland, Oct 26 2012
E.g.f. for column k: x^k/k! * exp(3x). - Geoffrey Critzer, Sep 04 2013
Comments