cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A027485 Second subdiagonal of triangle A027479, constructed from the Stirling numbers of the first kind.

Original entry on oeis.org

1175, 36935, 460035, 3411835, 18037810, 75042450, 261050370, 790412370, 2142018945, 5301812945, 12168481325, 26200706805, 53409827380, 103832238580, 193651833780, 348184665300, 605986277115, 1024397262315, 1686904988615, 2712769566815, 4269440463750
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A027479 (fourth power of the triangular matrix of the Stirling numbers of the first kind).

Extensions

Definition edited by Olivier Gérard, Jan 20 2019
More terms from Sean A. Irvine, Nov 06 2019

A027492 First column of Triangle A027479, constructed from the Stirling numbers of the first kind.

Original entry on oeis.org

1, 15, 1175, 294330, 181082204, 231844265940, 551220029003580, 2239429013789400720, 14591040654287257562304, 145033009542380637757759680, 2112192468307817772279540177600
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A027479 (fourth power of the triangular matrix of the Stirling numbers of the first kind).

Extensions

Definition edited by Olivier Gérard, Jan 20 2019

A027493 Second column of Triangle A027479, constructed from the Stirling numbers of the first kind.

Original entry on oeis.org

1, 120, 36935, 25816200, 36133755364, 91850446178400, 393327895035809180, 2675039498159452367040, 27560317167934730312259456, 413843767423449662598795745920, 8770587574512577781320579427273280
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A027479 (fourth power of the triangular matrix of the Stirling numbers of the first kind).

Extensions

Definition edited by Olivier Gérard, Jan 20 2019

A027494 Third column of Triangle A027479, constructed from the Stirling numbers of the first kind.

Original entry on oeis.org

1, 510, 460035, 757122975, 2159098539409, 10088942720014620, 73537595144196109100, 801932992091138324924100, 12630702915931923419085563316, 278859508455542166912631908053160
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A027479 (fourth power of the triangular matrix of the Stirling numbers of the first kind).

A027478 Triangle of the cube of the normalized, unsigned Stirling matrix of the first kind.

Original entry on oeis.org

1, 7, 1, 176, 39, 1, 10746, 2951, 126, 1, 1297704, 407450, 22535, 310, 1, 272866980, 94128364, 6139575, 112435, 645, 1, 91570835040, 33910601508, 2487385684, 54814095, 426475, 1197, 1, 46034917019280, 18030534782364, 1446119232796, 36402686929, 345710680, 1333906, 2044, 1
Offset: 1

Views

Author

Keywords

Comments

The absolute values are unchanged if one uses the signed Stirling numbers of the first kind.

Examples

			The first rows of the triangle are :
  1,
  7, 1,
  176, 39, 1,
  10746, 2951, 126, 1,
  1297704, 407450, 22535, 310, 1,
  272866980, 94128364, 6139575, 112435, 645, 1,
  ...
		

Crossrefs

Cf. A027477 for the quadratic version.
Cf. A027479 for the quartic version.
Cf. A027482 is the first subdiagonal of this triangle.

Programs

  • Mathematica
    Module[{nmax=8,m},m=(Table[Table[(-1)^(i+j) StirlingS1[i,j]/i!,{j,1,nmax}],{i,1,nmax}]);m=m.m.m*Table[i!^3,{i,1,nmax}]; Flatten[Table[Table[m[[i,j]],{j,1,i}],{i,1,nmax}],1]]

Formula

Let A be the lower triangular matrix with entries a[ i, j ] = (-1)^(i+j)*s(i, j)/i! if j<=i, 0 if j>i, where s(i,j) is the Stirling number of the first kind. Let N be the column vector ((i!^3)).
T is the lower triangular matrix A.A.A.N.

Extensions

Definition, formula and program edited for clarity by Olivier Gérard, Jan 20 2019

A027477 Triangle of the square of the normalized, unsigned Stirling matrix of the first kind.

Original entry on oeis.org

1, 3, 1, 23, 12, 1, 330, 215, 30, 1, 7604, 5700, 1035, 60, 1, 256620, 212464, 45675, 3535, 105, 1, 11923260, 10645152, 2582209, 241080, 9730, 168, 1, 729524880, 691560092, 183962268, 19661649, 970200, 23058, 252, 1
Offset: 1

Views

Author

Keywords

Examples

			First rows of the triangle are:
1,
3,1,
23,12,1,
330,215,30,1,
7604,5700,1035,60,1,
256620,212464,45675,3535,105,1
...
		

Crossrefs

Cf. A027478, A027479 (third and fourth power).

Programs

  • Mathematica
    Module[{nmax=8,m},m=(Table[Table[(-1)^(i+j) StirlingS1[i,j]/i!,{j,1,nmax}],{i,1,nmax}]);m=m.m*Table[i!^2,{i,1,nmax}]; Flatten[Table[Table[m[[i,j]],{j,1,i}],{i,1,nmax}],1]]

Formula

Let A be the lower triangular matrix with entries a[ i, j ] = (-1)^(i+j)*s(i, j)/i! if j<=i, 0 if j>i, where s(i,j) is the Stirling number of the first kind. Let N be the column vector ((i!^2)).
T is the lower triangular matrix A.A.N.

Extensions

Definition, formula and program edited for clarity by Olivier Gérard, Jan 20 2019

A027484 a(n) = n*(n^4-1)/2.

Original entry on oeis.org

15, 120, 510, 1560, 3885, 8400, 16380, 29520, 49995, 80520, 124410, 185640, 268905, 379680, 524280, 709920, 944775, 1238040, 1599990, 2042040, 2576805, 3218160, 3981300, 4882800, 5940675, 7174440, 8605170, 10255560, 12149985
Offset: 2

Views

Author

Keywords

Comments

Row sums in a pandiagonal magic 4D-cube with entries (0..n^4-1).
Can be computed from the fourth power of a matrix constructed with the Stirling numbers of the first kind (see A027479).

Crossrefs

First subdiagonal of A027479.

Programs

Formula

From Chai Wah Wu, Apr 08 2021: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 7.
G.f.: 15*x^2*(x + 1)^2/(x - 1)^6. (End)
Showing 1-7 of 7 results.