cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027575 a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2.

Original entry on oeis.org

14, 30, 54, 86, 126, 174, 230, 294, 366, 446, 534, 630, 734, 846, 966, 1094, 1230, 1374, 1526, 1686, 1854, 2030, 2214, 2406, 2606, 2814, 3030, 3254, 3486, 3726, 3974, 4230, 4494, 4766, 5046, 5334, 5630, 5934, 6246, 6566, 6894, 7230, 7574, 7926, 8286, 8654, 9030
Offset: 0

Views

Author

Keywords

Comments

Summation of n^2 taken 4 at a time. - Al Hakanson (hawkuu(AT)gmail.com), May 20 2009
Terms are congruent to (2,0,0) mod 6. - Ezhilarasu Velayutham, Apr 04 2019

Crossrefs

Programs

  • Magma
    [2*(2*n^2 +6*n +7): n in [0..50]]; // G. C. Greubel, Aug 25 2022
  • Mathematica
    Table[n^2 + (n + 1)^2 + (n + 2)^2 + (n + 3)^2, {n, 0, 42}] (* Alonso del Arte, Feb 17 2012 *)
    Table[Total[Range[n,n+3]^2],{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{14,30,54},50] (* Harvey P. Dale, Jan 23 2017 *)
    Total/@Partition[Range[0,50]^2,4,1] (* Harvey P. Dale, Feb 08 2020 *)
  • PARI
    vector(100, n, n--; n^2+(n+1)^2+(n+2)^2+(n+3)^2) \\ Altug Alkan, Nov 11 2015
    
  • Sage
    [i^2+(i+1)^2+(i+2)^2+(i+3)^2 for i in range(0,50)] # Zerinvary Lajos, Jul 03 2008
    

Formula

a(n) = 4*n^2 + 12*n + 14. - Al Hakanson (hawkuu(AT)gmail.com), May 20 2009
a(n) = a(n-1) + 8*(n+1) for n>0, a(0)=14. - Vincenzo Librandi, Nov 19 2010
G.f.: 2*(7-6*x+3*x^2)/(1-x)^3. - Colin Barker, Feb 17 2012
From Jean-Christophe Hervé, Nov 11 2015: (Start)
a(n) = (2*n+3)^2 + 5 = A016754(n+1) + 5, hence a(n) is never square.
The last formula defines a(n) for n < 0; then we have a(-n) = a(n-3) for all n. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Apr 16 2021
E.g.f.: 2*(7 + 8*x + 2*x^2)*exp(x). - G. C. Greubel, Aug 25 2022
Sum_{n>=0} 1/a(n) = tanh(sqrt(5)*Pi/2)*Pi/(4*sqrt(5)) - 1/6. - Amiram Eldar, Sep 15 2022