A027598 Numbers k such that the set of prime divisors of k is equal to the set of prime divisors of sigma(k).
1, 6, 28, 120, 270, 496, 672, 1080, 1638, 1782, 3780, 8128, 18600, 20580, 24948, 26208, 30240, 32640, 32760, 35640, 41850, 44226, 55860, 66960, 164640, 167400, 185220, 199584, 273000, 293760, 401310, 441936, 446880, 502740, 523776, 614250, 707616, 802620, 819000
Offset: 1
Keywords
Examples
273000 = 2^3*3*5^3*7*13 and sigma(273000) = 1048320 = 2^8*3^2*5*7*13 so 273000 is in the sequence.
References
- R. K. Guy, Unsolved Problems in Number Theory, B19.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..500 (first 100 terms from T. D. Noe)
- Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12a, Paper A14, 2012.
Crossrefs
Programs
-
GAP
Filtered([1..1000000],n->Set(Factors(n))=Set(Factors(Sigma(n)))); # Muniru A Asiru, Feb 21 2019
-
Mathematica
Select[Range[1000000], Transpose[FactorInteger[#]][[1]] == Transpose[FactorInteger[DivisorSigma[1, #]]][[1]] &] (* T. D. Noe, Dec 08 2012 *)
-
PARI
a(n) = {for (i=1, n, fn = factor(i); fs = factor(sigma(i)); if (fn[,1] == fs[,1], print1(i, ", ")););} \\ Michel Marcus, Nov 18 2012
-
PARI
is(n)=my(f=factor(n),fs=[],t);for(i=1,#f[,1], t=factor((f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1))[,1]; fs=vecsort(concat(fs,t~),,8); if(#setminus(fs,f[,1]~), return(0))); fs==f[,1]~ \\ Charles R Greathouse IV, May 09 2013
Extensions
Edited by N. J. A. Sloane, Jul 12 2008 at the suggestion of R. J. Mathar
Comments