cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027603 a(n) = n^3 + (n+1)^3 + (n+2)^3 + (n+3)^3.

Original entry on oeis.org

36, 100, 224, 432, 748, 1196, 1800, 2584, 3572, 4788, 6256, 8000, 10044, 12412, 15128, 18216, 21700, 25604, 29952, 34768, 40076, 45900, 52264, 59192, 66708, 74836, 83600, 93024, 103132, 113948, 125496, 137800, 150884, 164772
Offset: 0

Views

Author

Keywords

Comments

Sums of four consecutive cubes. - Wesley Ivan Hurt, Dec 16 2015

Crossrefs

Programs

  • Magma
    [4*n^3 + 18*n^2 + 42*n + 36: n in [0..40]]; // Vincenzo Librandi, Jun 04 2011
    
  • Maple
    A027603:=n->n^3 + (n+1)^3 + (n+2)^3 + (n+3)^3: seq(A027603(n), n=0..50); # Wesley Ivan Hurt, Dec 16 2015
  • Mathematica
    Table[n^3 +(n+1)^3 +(n+2)^3 +(n+3)^3, {n, 0, 33}] (* or *)
    Table[Plus@@(Range[n, n + 3]^3), {n, 0, 33}] (* Alonso del Arte, Jan 24 2011 *)
  • PARI
    Vec(-4*(-9+11*x-10*x^2+2*x^3)/(1-x)^4 + O(x^100)) \\ Altug Alkan, Dec 16 2015
  • Python
    A027603_list, m = [], [24, 12, 28, 36]
    for _ in range(10**2):
        A027603_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
    
  • Sage
    [n^3+(n+1)^3+(n+2)^3+(n+3)^3 for n in range(0,40)] # Zerinvary Lajos, Jul 03 2008
    

Formula

a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) for n>=4.
a(n) = 4*n^3 + 18*n^2 + 42*n + 36 = 4*A173965(n+2).
From Bruno Berselli, Jan 24 2011: (Start)
G.f.: 4*(9 - 11*x + 10*x^2 - 2*x^3)/(1-x)^4.
a(n) = A027689(n+1) * A016825(n+1). (End)
E.g.f.: 2*(18 + 32*x + 15*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Aug 24 2022