A027620 a(n) = n + (n+1)^2 + (n+2)^3.
9, 32, 75, 144, 245, 384, 567, 800, 1089, 1440, 1859, 2352, 2925, 3584, 4335, 5184, 6137, 7200, 8379, 9680, 11109, 12672, 14375, 16224, 18225, 20384, 22707, 25200, 27869, 30720, 33759, 36992, 40425, 44064, 47915, 51984, 56277, 60800
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Patrick De Geest, Palindromic Quasi_Under_Squares of the form n+(n+1)^2
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n + (n+1)^2 + (n+2)^3: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
-
Maple
[seq((n+3)^2*(n+1), n=0..40)]; # Zerinvary Lajos, Sep 24 2006
-
Mathematica
Table[n +(n+1)^2 +(n+2)^3, {n, 0, 40}] (* or *) LinearRecurrence[{4,-6,4,-1},{9,32,75,144}, 40] (* Harvey P. Dale, Feb 23 2021 *)
-
Maxima
A027620(n):=n + (n+1)^2 + (n+2)^3$ makelist(A027620(n),n,0,15); /* Martin Ettl, Dec 13 2012 */
-
PARI
a(n)=n+(n+1)^2+(n+2)^3 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[i+(i+1)^2+(i+2)^3 for i in range(0,38)] # Zerinvary Lajos, Jul 03 2008
Formula
a(n) = (n+1)*(n+3)^2. - Zerinvary Lajos, Sep 24 2006, corrected Dec 21 2010
G.f.: (9 - 4*x + x^2)/(1 - x)^4. - R. J. Mathar, Dec 21 2010
a(n) = coefficient of x^3 in the Maclaurin expansion of -1/((n+3)*x^2 + (n+3)*x + 1). - Francesco Daddi, Aug 04 2011
E.g.f.: (9 + 23*x + 10*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 05 2022
Comments